留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑接触角滞后性多孔介质内非混相驱替研究

陈家豪 娄钦

陈家豪, 娄钦. 考虑接触角滞后性多孔介质内非混相驱替研究[J]. 应用数学和力学, 2021, 42(9): 900-914. doi: 10.21656/1000-0887.410278
引用本文: 陈家豪, 娄钦. 考虑接触角滞后性多孔介质内非混相驱替研究[J]. 应用数学和力学, 2021, 42(9): 900-914. doi: 10.21656/1000-0887.410278
CHEN Jiahao, LOU Qin. An Investigation on the Immiscible Displacement in Porous Media With Contact Angle Hysteresis[J]. Applied Mathematics and Mechanics, 2021, 42(9): 900-914. doi: 10.21656/1000-0887.410278
Citation: CHEN Jiahao, LOU Qin. An Investigation on the Immiscible Displacement in Porous Media With Contact Angle Hysteresis[J]. Applied Mathematics and Mechanics, 2021, 42(9): 900-914. doi: 10.21656/1000-0887.410278

考虑接触角滞后性多孔介质内非混相驱替研究

doi: 10.21656/1000-0887.410278
基金项目: 

国家自然科学基金(51976128);上海市自然科学基金(19ZR1435700);上海市青年科技英才扬帆计划(18YF1418000)

详细信息
    作者简介:

    陈家豪(1996—),男,硕士生(E-mail: 1461240047@qq.com);娄钦(1984—),女,博士(通讯作者. E-mail: louqin560916@163.com).

    通讯作者:

    娄钦(1984—),女,博士(通讯作者. E-mail: louqin560916@163.com).

  • 中图分类号: O357.1

An Investigation on the Immiscible Displacement in Porous Media With Contact Angle Hysteresis

Funds: 

The National Natural Science Foundation of China(51976128)

  • 摘要: (接触角滞后性表现为前进和后退接触角不同, 其是润湿表面上两相流动中的重要现象.该文采用改进的伪势格子Boltzmann(LB)两相模型, 并与几何润湿边界条件相结合, 研究了接触角滞后性、毛细数以及几何结构对多孔介质内不混溶驱替过程的影响.数值结果表明:单渗透性多孔介质内相同毛细数下,保持后退角一定,驱替效率随着前进角的增大而增大;疏水和中性接触角滞后性窗口中, 驱替效率随滞后性窗口大小增大而减小.在亲水接触角滞后性窗口中, 接触角滞后性大小作用不明显;同等窗口大小下, 所有选取的亲水滞后性窗口驱替效率大于中性滞后性窗口, 中性滞后性窗口驱替效率大于疏水滞后性窗口.单渗透性多孔介质内相同接触角滞后性条件下,毛细数Ca越大, 驱替相在多孔介质内的指进现象越明显, 驱替效率越小.另外, 双渗透多孔介质中驱替相更易在高渗透性区域流动并率先突破边界, 驱替效率较单渗透性显著下降.
  • DE GENNES P-G, BROCHARD-WYART F, QUERE D.Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves[M]. Berlin: Springer, 2010.
    [2]WANG H X, ZHOU H, NIU H T, et al. Dual-layer superamphiphobic/superhydrophobic-oleophilic nanofibrous membranes with unidirectional oil-transport ability and strengthened oil-water separation performance[J].Advanced Materials Interfaces,2015,2(4): 1400506.
    [3]LIU K S, LEI J. Metallic surfaces with special wettability[J].Nanoscale,2011,3(3): 825-838.
    [4]WEN L P, TIAN Y, JIANG L. Bioinspired super-wettability from fundamental research to practical applications[J].Angewandte Chemie: International Edition,2015,54(11): 3387-3399.
    [5]TIAN D L, SONG Y L, JIANG L. Patterning of controllable surface wettability for printing techniques[J].Chemical Society Reviews,2013,42(12): 5184-5209.
    [6]LI S H, HUANG J Y, CHEN Z, et al. A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications[J].Journal of Materials Chemistry A,2017,5(1): 31-55.
    [7]杨勇林, 王旭, 李星. 液滴对弹性梯度薄基变形的影响[J]. 应用数学和力学, 2021,42(1): 58-70. (YANG Yonglin, WANG Xu, LI Xing. Effects of droplet on the deformation of elastic gradient thin substrate[J].Applied Mathematics and Mechanics,2021,42(1): 58-70.(in Chinese))
    [8]逄明华, 刘焜, 刘小君. 锥形微通道内液滴自输运特性及力学驱动机制研究[J]. 应用数学和力学, 2017,38(3): 284-294. (PANG Minghua, LIU Kun, LIU Xiaojun. Droplets’ directional motion characteristics in conical microchannels and driving mechanisms[J].Applied Mathematics and Mechanics,2017,38(3): 284-294.(in Chinese))
    [9]PADOIN N, DE SOUZA A Z, ROPELATO K, et al. Numerical simulation of isothermal gas-liquid flow patterns in microchannels with varying wettability[J].Chemical Engineering Research & Design,2016,109: 698-706.
    [10]刘佳威, 许志美, 宗原, 等. 多孔介质通道内非混相驱替过程的格子Boltzmann方法模拟[J]. 石油化工, 2017,46(11): 1347-1354. (LIU Jiawei, XU Zhimei, ZONG Yuan, et al. Lattice Boltzmann simulation for CO2 foam flow in porous media[J].Petrochemical Technology,2017,46(11): 1347-1354.(in Chinese))
    [11]臧晨强, 娄钦. 复杂微通道内非混相驱替过程的格子Boltzmann方法[J]. 物理学报, 2017,66(13): 134701.(ZANG Chenqiang, LOU Qin. Lattice Boltzmann simulation of immiscible displacement in the complex micro-channel[J].Acta Physica Sinica,2017,66(13): 134701.(in Chinese))
    [12]CHOI C, YU D I, KIM M. Surface wettability effect on flow pattern and pressure drop in adiabatic two-phase flows in rectangular microchannels with T-junction mixer[J].Experimental Thermal and Fluid Science,2011,35(6): 1086-1096.
    [13]RAPOLU P, SON S Y. Characterization of wettability effects on pressure drop of two-phase flow in microchannel[J].Experiments in Fluids,2011, 51(4): 1101-1108.
    [14]YANG J P, MA X, FEI L L, et al. Effects of hysteresis window on contact angle hysteresis behaviour at large Bond number[J].Journal of Colloid and Interface Science,2020,566: 327-337.
    [15]NOORI M S, RAHNI M T, TALEGHANI A S. Effects of contact angle hysteresis on drop manipulation using surface acoustic waves[J].Theoretical and Computational Fluid Dynamics,2020,34(1/2): 145-162.
    [16]WEN M G, LEI D, LI Y, et al. A linear regime of hysteresis for calculating the dynamic contact angle under low capillary numbers with displacement experiments in microscale PDMS microchannels[J].Journal of Colloid and Interface Science,2020,560: 626-638.
    [17]FENG P F, CHEN D, PENG B, et al. Numerical investigations of water droplet dynamics in micro-channels considering contact angle hysteresis[J].Journal of Power Sources,2020,479: 229104.
    [18]SHI Z, ZHANG Y, LIU M C, et al. Dynamic contact angle hysteresis in liquid bridges[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2018, 555: 365-371.
    [19]PORTER M L, COON E T, KANG Q, et al. Multicomponent interparticle-potential lattice Boltzmann model for fluids with large viscosity ratios[J].Physical Review E,2012,86(3-2): 036701.
    [20]郭照立, 郑楚光. 格子Boltzmann方法的原理及应用[M]. 北京: 科学出版社, 2008.(GUO Zhaoli, ZHENG Chuguang.Theory and Applications of Lattice Boltzmann Method[M]. Beijing: Science Press, 2008.(in Chinese))
    [21]KANG Q J, ZHANG D X, CHEN S Y. Displacement of a two-dimensional immiscible droplet in a channel[J].Physics of Fluids,2002, 14(9): 3203-3214.
    [22]DING H, SPELT P D M. Wetting condition in diffuse interface simulations of contact line motion[J].Physical Review E,2007,74(4): 046708.
    [23]HUANG J J, HUANG H B, WANG X Z. Numerical study of drop motion on a surface with stepwise wettability gradient and contact angle hysteresis[J].Physics of Fluids,2014,26(26): 062101.
    [24]WANG L, HUANG H B, LU X Y. Scheme for contact angle and its hysteresis in a multiphase lattice Boltzmann method[J].Physical Review E,2013,87(1): 013301.
    [25]LIU H H, JU Y P, WANG N N, et al. Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference[J].Physical Review E,2015, 95(3): 033306.
    [26]LADD A J C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation, part 1: theoretical foundation[J].Journal of Fluid Mechanics,1994,271: 285-309.
    [27]ZIEGLER D. Boundary conditions for lattice Boltzmann simulations[J].Journal of Statistical Physics,1993, 71(5): 1171-1177.
    [28]LOU Q, GUO Z L, SHI B C. Evaluation of outflow boundary conditions for two-phase lattice Boltzmann equation[J].Physical Review E,2013,87(6): 063301.
    [29]DONG B, YAN Y Y, LI W Z. LBM simulation of viscous fingering phenomenon in immiscible displacement of two fluids in porous media[J].Transport in Porous Media,2011,88(2): 293-314.
    [30]TROJER M, SZULCZEWSKI M L, JUANES R. Stabilizing fluid-fluid displacements in porous media through wettability alteration[J].Physical Review Applied,2015,3(5): 054008.
    [31]CHUNG C, LEE M, CHAR K, et al. Droplet dynamics passing through obstructions in confined microchannel flow[J].Microfluidics and Nanofluidics,2010,9(6): 1151-1163.
    [32]LIU H H, VALOCCHI A J, KANG Q J, et al. Pore-scale simulations of gas displacing liquid in a homogeneous pore network using the lattice Boltzmann method[J].Transport in Porous Media,2013,99(3): 555-580.
    [33]LIU H H, ZHANG Y H, VALOCCHI A J. Lattice Boltzmann simulation of immiscible fluid displacement in porous media:homogeneous versus heterogeneous pore network[J].Physics of Fluids,2015, 27: 052103.
    [34]PERRIN J, BENSON S M. An experimental study on the influence of sub-core scale heterogeneities on CO2 distribution in reservoir rocks[J].Transport in Porous Media,2010,82(1): 93-109.
    [35]SHI J Q, XUE Z Q, DURUCAN S. Supercritical CO2 core flooding and imbibition in Tako sandstone: influence of sub-core scale heterogeneity[J].International Journal of Greenhouse Gas Control,2011,5(1): 75-87.
    [36]ZHANG C Y, OOSTROM M, GRATE J W, et al. Liquid CO2 displacement of water in a dual-permeability pore network micromodel[J].Environmental Science & Technology,2011,45(17): 7581-7588.
    [37]SHI Y, TANG G H. Non-Newtonian rheology property for two-phase flow on fingering phenomenon in porous media using the lattice Boltzmann method[J].Journal of Non-Newtonian Fluid Mechanics,2016,229: 86-95.
  • 加载中
计量
  • 文章访问数:  54
  • HTML全文浏览量:  13
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-15
  • 修回日期:  2021-03-04
  • 网络出版日期:  2021-09-29

目录

    /

    返回文章
    返回