## 留言板 引用本文: 赵翔，孟诗瑶. 基于Green函数分析Euler-Bernoulli双曲梁系统的受迫振动 [J]. 应用数学和力学，2023，44（2）：168-177 ZHAO Xiang, MENG Shiyao. Forced Vibration Analysis of Euler-Bernoulli Double-Beam Systems by Means of Green’s Functions[J]. Applied Mathematics and Mechanics, 2023, 44(2): 168-177. doi: 10.21656/1000-0887.430298
 Citation: ZHAO Xiang, MENG Shiyao. Forced Vibration Analysis of Euler-Bernoulli Double-Beam Systems by Means of Green’s Functions[J]. Applied Mathematics and Mechanics, 2023, 44(2): 168-177. • 中图分类号: O326

## Forced Vibration Analysis of Euler-Bernoulli Double-Beam Systems by Means of Green’s Functions

• 摘要:

双曲梁系统通常出现在许多工程领域。与双直梁系统相比，该系统在噪声和振动控制问题上的效率更高。该文采用经典的Euler-Bernoulli曲梁模型来模拟双曲梁系统，通过Green函数和Laplace变换方法得到双曲梁系统稳态受迫振动的闭合形式解，该解可用于任何边界条件。在数值部分，通过与参考文献中的一些结果进行比较来验证本方案的解。讨论了一些重要的几何和物理参数对振动响应的影响以及弹性层刚度与双曲梁系统之间的相互作用。结果表明，梁的半径趋于无穷大时，双曲梁系统退化为双直梁系统，此外，双曲梁系统也可以简化为一个直梁和一个曲梁的组合形式。

• 图  1  任意边界条件下的双曲梁系统在$x = {x_0}$ 处受到外激励作用

Figure  1.  The DCB system with arbitrary boundary conditions subjected to a load

图  2  退化简支曲梁在外部动力作用下的无量纲挠度

Figure  2.  Dimensionless displacement $g( \xi$ , 0.5)(n=1, m=1, 2) of the degenerated ECB as a function of dimensionless coordinate $\xi$ 图  3  退化简支双曲梁在外部动力作用下的无量纲挠度

Figure  3.  Dimensionless displacement $g( \xi$ , 0.5)(n=1, m=1, 2) of the degenerated DCB as a function of dimensionless coordinate $\xi$ 图  4  相同半径不同弹性层弹性模量下双曲梁的无量纲化位移$g_{nm}( \xi$ , 0.5)(n=1, m=1, 2) $(R = 100$ , $\varOmega ' = 0.5)$ Figure  4.  Dimensionless Green’s function $g_{nm}( \xi$ , 0.5)(n=1, m=1, 2) as a function of dimensionless coordinate $x$ for different values of stiffness modulus K$(R = 100$ , $\varOmega ' = 0.5)$ 图  5  不同半径相同弹性层弹性模量和相同外激励下双曲梁的无量纲化位移$g_{nm}( \xi$ , 0.5)(n=1, m=1, 2) $({K_0} = 0.1$ , $\varOmega ' = {\text{0}}.5)$ Figure  5.  Dimensionless Green’s function $g_{nm}( \xi$ , 0.5)(n=1, m=1, 2) as a function of dimensionless coordinate $x$ for different radius values $({K_0} = 0.1$ , $\varOmega ' = {\text{0}}.5)$ 图  6  相同半径相同弹性层弹性模量不同外激励下双曲梁的无量纲化位移$({K_0} = 0.1$ , $\varOmega ' = 5$ , $10)$ Figure  6.  Dimensionless Green’s function $g_{nm}( \xi$ , 0.5)(n=1, m=1, 2) as a function of dimensionless coordinate $x$ for different external frequency values$({K_0} = 0.1$ , $\varOmega ' = 5$ , $10)$ 表  1  双曲梁的不同边界条件

Table  1.   Boundary conditions (BCs) of the DCB

 BC beam ECB pinned upper beam ${W_1}\left| {_{x = 0,L} } \right. = 0,{\text{ } }{\lambda _{15} }W_1^{\left( 4 \right)} + {\lambda _{ {\text{16} } } }W_1^{\prime \prime }\left| {_{x = 0,L} } \right.{\text{ = 0, } }{\lambda _{ {\text{11} } } }W_1^{\left( 5 \right)} + {\lambda _{ {\text{12} } } }W_1^{\prime \prime \prime } + {\lambda _{ {\text{13} } } }W_1^\prime + {\lambda _{ {\text{14} } } }W_2^\prime \left| {_{x = 0,L} } \right. = 0$ bottom beam ${W_{\text{2} } }\left| {_{x = 0,L} } \right. = 0,{\text{ } }{\lambda _{ {\text{25} } } }W_{\text{2} } ^{\left( 4 \right)} + {\lambda _{ {\text{26} } } }W_{\text{2} }^{\prime \prime }\left| {_{x = 0,L} } \right.{\text{ = 0, } }{\lambda _{ {\text{21} } } }W_{\text{2} }^{\left( 5 \right)} + {\lambda _{ {\text{22} } } }W_{\text{2} }^{\prime \prime \prime } + {\lambda _{ {\text{23} } } }W_{\text{2} }^\prime + {\lambda _{ {\text{24} } } }W_{\text{1} } ^\prime \left| {_{x = 0,L} } \right. = 0$ fixed upper beam ${W_1}\left| {_{x = 0,L} } \right. = 0,{\text{ } }W_1^\prime \left| {_{x = 0,L} } \right.{\text{ = 0, } }{\lambda _{ {\text{11} } } }W_1^{\left( 5 \right)} + {\lambda _{ {\text{12} } } }W_1^{\prime \prime \prime }\left| {_{x = 0,L} } \right. = 0$ bottom beam $W_2\left| {_{x = 0,L} } \right. = 0,{\text{ } }W_2^\prime \left| {_{x = 0,L} } \right.{\text{ = 0, } }{\lambda _{ {\text{21} } } }W_1^{\left( 5 \right)} + {\lambda _{ {\text{22} } } }W_1^{\prime \prime \prime }\left| {_{x = 0,L} } \right. = 0$ free upper beam $W_1^{\prime \text{}\prime }|{}_{x=0,L}=0,\text{ }W_1^{\prime \text{}\prime \text{}\prime }|{}_{x=0,L}\text{=0, }{\lambda }_{11}W_1^{\left( 5 \right)} + {\lambda }_{13}W_1^{\prime } + {\lambda }_{14}W_2^{\prime }|{}_{x=0,L}=0$ bottom beam $W_2^{\prime \text{}\prime }|{}_{x=0,L}=0,\text{ }W_2^{\prime \text{}\prime \text{}\prime }|{}_{x=0,L}\text{=0, }{\lambda }_{21}W_2^{\left( 5 \right)} + {\lambda }_{23}{W}_2^{\prime } + {\lambda }_{24}{W}_1^{\prime }|{}_{x=0,L}=0$
•  点击查看大图
##### 计量
• 文章访问数:  79
• HTML全文浏览量:  63
• PDF下载量:  17
• 被引次数: 0
##### 出版历程
• 收稿日期:  2022-09-28
• 修回日期:  2022-12-09
• 网络出版日期:  2023-02-01
• 刊出日期:  2023-02-15

### 目录 / 下载:  全尺寸图片 幻灯片
• 分享
• 用微信扫码二维码

分享至好友和朋友圈