HUANG Jun, CHEN Yuming. Codimension-2 Bifurcation Dynamics and Infinity Analysis of a Class of Lorenz Chaos Systems With Memristors[J]. Applied Mathematics and Mechanics, 2020, 41(11): 1275-1283. doi: 10.21656/1000-0887.410023
Citation: HUANG Jun, CHEN Yuming. Codimension-2 Bifurcation Dynamics and Infinity Analysis of a Class of Lorenz Chaos Systems With Memristors[J]. Applied Mathematics and Mechanics, 2020, 41(11): 1275-1283. doi: 10.21656/1000-0887.410023

Codimension-2 Bifurcation Dynamics and Infinity Analysis of a Class of Lorenz Chaos Systems With Memristors

doi: 10.21656/1000-0887.410023
Funds:  The National Natural Science Foundation of China(11701104)
  • Received Date: 2020-01-10
  • Rev Recd Date: 2020-10-13
  • Publish Date: 2020-11-01
  • Based on the classical Lorenz system, a class of 3D memristive chaotic systems were obtained through feedback control, and the local high codimensional bifurcation and the infinite global dynamic behavior of the system were studied. Firstly, according to the average theory, the zeroHopf bifurcation behavior at the origin equilibrium point was analyzed. Secondly, with the center manifold theory, the doublezero bifurcation at the origin of the system was investigated. Finally, according to the Poincaré compactification method, the dynamics at infinity of the system was discussed.
  • loading
  • [1]
    BAO B C, XU J P, LIU Z. Initial state dependent dynamical behaviors in a memristor based chaotic circuit[J]. Chinese Physics Letters,2010,27(7): 070504.
    [2]
    LIN Z H, WANG H X. Efficient image encryption using a chaos-based PWL memristor[J]. IETE Technical Review,2010,27(4): 318-325.
    [3]
    SUN J W, SHEN Y, YIN Q, et al. Compound synchronization of four memristor chaotic oscillator systems and secure communication[J]. Chaos,2013,23(1): 013140.
    [4]
    王伟, 曾以成, 陈争, 等. 忆阻器混沌电路产生的共存吸引子与Hopf分岔[J]. 计算物理, 2017,34(6): 747-756.(WANG Wei, ZENG Yicheng, CHEN Zheng, et al. Coexisting attractors and Hopf bifuracation in floating memristors based chaotic ciruit[J]. Chinese Journal of Computtaional Physics,2017,34(6): 747-756.(in Chinese))
    [5]
    陈秋杰, 李文. 忆阻器混沌电路的硬件实现[J]. 工业控制计算机, 2018,31(11): 155-156.(CHEN Qiujie, LI Wen. Hardware implementation of memristor chaotic circuit[J]. Industrial Control Computer,2018,31(11): 155-156.(in Chinese))
    [6]
    周鹍. 余维2的叉形分岔[J]. 力学与实践, 1996,18(1): 26-27.(ZHOU Kun. The fork bifurcation of codimension 2[J]. Mechanics in Engineering,1996,18(1): 26-27.(in Chinese))
    [7]
    黄俊, 陈玉明. 一类具有忆阻器的Lorenz 型混沌系统稳定性及余维一分岔分析[J]. 应用数学进展, 2019,8(4): 858-867.(HUANG Jun, CHEN Yuming. Stability and co-dimension one bifurcation analysis of a class of Lorenz chaotic systems with memristor[J]. Advances in Applied Mathematics,2019,8(4): 858-867.(in Chinese))
    [8]
    张海龙, 闵富红, 王恩荣. 关于Lyapunov指数计算方法的比较[J]. 南京师范大学学报(工程技术版), 2012,12(1): 5-9.(ZHANG Hailong, MIN Fuhong, WANG Enrong. The comparison for Lyapunov exponents calculation methods[J]. Journal of Nanjing Normal University(Engineering and Technology Edition),2012,12(1): 5-9.(in Chinese))
    [9]
    GUCKENHEIMER J. On a codimension two bifurcation[J]. Lecture Notes in Mathematics,1981,898: 99-142.
    [10]
    韩茂安. 三维系统余维二分支中周期轨道与不变环面的存在性[J]. 系统科学与数学, 1998,18(4): 403-409.(HAN Maoan. Existence of periodic orbits and invariant tori in co-dimension two bifurcations of three dimensional systems[J]. Journal of Systems Science and Mathematical Sciences,1998,18(4): 403-409.(in Chinese))
    [11]
    CHEN Y M, LIANG H H. Zero-zero-Hopf bifurcation and ultimate bound estimation of a generalized Lorenz-Stenflo hyperchaotic system[J].Mathematical Methods in the Applied Sciences,2017,40: 3424-3432.
    [12]
    张芷芬, 丁同仁, 黄文灶, 等. 微分方程定性理论[M]. 北京: 科学出版社, 1997.(ZHANG Zhifen, DING Tongren, HUANG Wenzao, et al. Qualitative Theory of Differential Equations [M]. Beijing: Science Press, 1997.(in Chinese))
    [13]
    CIMA A, LLIBRE J. Bounede polynomial vector fields[J]. Transactions of the American Mathematical Society,1990,318: 557-579.
    [14]
    陈玉明. 基于Lorenz型系统的四维超混沌系统的复杂动力学研究[D]. 博士学位论文. 广州: 华南理工大学, 2014.(CHEN Yuming. Research on complex dynamics of four-dimensional hyperchaotic systems based on Lorenz-type systems[D]. PhD Thesis. Guangzhou: South China University of Technology, 2014.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1580) PDF downloads(518) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return