Volume 43 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
LI Jing, SUN Guiquan, JIN Zhen. Effects of Intraspecific Competition Delay on Vegetation Periodic Oscillation Patterns[J]. Applied Mathematics and Mechanics, 2022, 43(6): 669-681. doi: 10.21656/1000-0887.420190
Citation: LI Jing, SUN Guiquan, JIN Zhen. Effects of Intraspecific Competition Delay on Vegetation Periodic Oscillation Patterns[J]. Applied Mathematics and Mechanics, 2022, 43(6): 669-681. doi: 10.21656/1000-0887.420190

Effects of Intraspecific Competition Delay on Vegetation Periodic Oscillation Patterns

doi: 10.21656/1000-0887.420190
  • Received Date: 2021-07-06
  • Rev Recd Date: 2021-10-05
  • Available Online: 2022-04-24
  • Publish Date: 2022-06-30
  • Aimed at the phenomenon of competing for water resources between young vegetation and adult vegetation in arid and semi-arid areas, a vegetation-soil water dynamic model with intraspecfic competition delay was established. The conditions for the existence of an unique vegetation survival equilibrium and the local stability of the vegetation extinction equilibrium were analyzed. The generating conditions for Hopf bifurcating periodic solutions of non-spatial and spatial systems were given, respectively. The periodic oscillation pattern appearing in the vegetation evolution with time was numerically simulated. Through the parameter sensitivity analysis, the rainfall and the vegetation growth rate were found to have significant influences on the generation, the amplitude and the period of this pattern, while the effects of evaporation was found to be the least significant. The results indicate that, the rainfall and the vegetation properties have profound impacts on the evolution and development of vegetation in arid and semi-arid areas. The introduction of spatial diffusion inhibits the occurrence of this pattern, but doesn’t affect the amplitude and the period. The work explains the phenomenon of vegetation periodic oscillation widely observed in nature, and provides theoretical supports for the sustainable development of the vegetation system.

  • loading
  • [1]
    EIGENTLER L, SHERRATT J A. Metastability as a coexistence mechanism in a model for dryland vegetation patterns[J]. Bulletin of Mathematical Biology, 2019, 81(7): 2290-2322. doi: 10.1007/s11538-019-00606-z
    [2]
    PRINGLE R M, DOAK D F, BRODY A K, et al. Spatial pattern enhances ecosystem functioning in an African savanna[J]. PLoS Biology, 2010, 8(5): e1000377. doi: 10.1371/journal.pbio.1000377
    [3]
    GOWDA K, CHEN Y, IAMS S, et al. Assessing the robustness of spatial pattern sequences in a dryland vegetation model[J]. Proceedings of the Royal Society A, 2016, 472: 20150893. doi: 10.1098/rspa.2015.0893
    [4]
    GETZIN S, YIZHAQ H, BELL B, et al. Discovery of fairy circles in Australia supports self-organization theory[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(13): 3551-3556. doi: 10.1073/pnas.1522130113
    [5]
    GILAD E, VON HARDENBERG J, PROVEBZALE A, et al. Ecosystem engineers: from pattern formation to habit creation[J]. Physical Review Letters, 2004, 93(9): 098105. doi: 10.1103/PhysRevLett.93.098105
    [6]
    KLAUSMEIER C A. Regular and irregular patterns in semiarid vegetation[J]. Science, 1999, 284(5421): 1826-1828. doi: 10.1126/science.284.5421.1826
    [7]
    VON HARDENBERG J, MERON E, SHACHAK M, et al. Diversity of vegetation patterns and desertification[J]. Physical Review Letters, 2001, 87(19): 198101. doi: 10.1103/PhysRevLett.87.198101
    [8]
    LIU Q X, JIN Z, LI B L. Numerical investigation of spatial pattern in a vegetation model with feedback function[J]. Journal of Theoretical Biology, 2008, 254(2): 350-360. doi: 10.1016/j.jtbi.2008.05.017
    [9]
    BONACHELA J A, PRINGLE R M, SHEFFER E, et al. Termite mounds can increase the robustness of dryland ecosystems to climatic change[J]. Science, 2015, 347(6222): 651-655. doi: 10.1126/science.1261487
    [10]
    TARNITA C E, BONACHEL J A, SHEFFER E, et al. A theoretical foundation for multi-scale regular vegetation patterns[J]. Nature, 2017, 541(7637): 398-401. doi: 10.1038/nature20801
    [11]
    SUN G Q, WANG C H, CHANG L L, et al. Effects of feedback regulation on vegetation patterns in semi-arid environments[J]. Applied Mathematical Modelling, 2018, 61: 200-215. doi: 10.1016/j.apm.2018.04.010
    [12]
    LI J, SUN G Q, JIN Z. Interaction of time delay and spatial diffusion induce the periodic oscillation of the vegetation system[J]. Discrete and Continuous Dynamical Systems (Series B), 2022, 27(4): 2147-2172. doi: 10.3934/dcdsb.2021127
    [13]
    曹建智, 谭军, 王培光. 一类具有时滞的云杉蚜虫种群模型的Hopf分岔分析[J]. 应用数学和力学, 2019, 40(3): 332-342. (CAO Jianzhi, TAN Jun, WANG Peiguang. Hopf bifurcation analysis of a model for spruce budworm populations with delays[J]. Applied Mathematics and Mechanics, 2019, 40(3): 332-342.(in Chinese)

    CAO Jianzhi, TAN Jun, WANG Peiguang. Hopf bifurcation analysis of a model for spruce budworm populations with delays[J]. Applied Mathematics and Mechanics, 2019, 40(3): 332-342. (in Chinese)
    [14]
    谷雨萌, 黄明迪. 一类时间周期的时滞竞争系统行波解的存在性[J]. 应用数学和力学, 2020, 41(6): 658-668. (GU Yumeng, HUANG Mingdi. Existence of periodic traveling waves for time-periodic Lotka-Volterra competition systems with delay[J]. Applied Mathematics and Mechanics, 2020, 41(6): 658-668.(in Chinese)

    GU Yumeng, HUANG Mingdi. Existence of periodic traveling waves for time-periodic lotka-volterra competition systems with delay[J]. Applied Mathematics and Mechanics, 2020, 41(6): 658-668. (in Chinese)
    [15]
    欧阳颀. 非线性科学与斑图动力学导论[M]. 北京: 北京大学出版社, 2010.

    OUYANG Qi. Introduction to Nonlinear Science and Pattern Dynamics[M]. Beijing: Peking University Press, 2010. (in Chinese)
    [16]
    INGALLS B. Sensitivity analysis: from model parameters to system behaviour[J]. Essays in Biochemistry, 2008, 45: 177-194. doi: 10.1042/bse0450177
    [17]
    KÉFI S, RIETKERK M, ALADOS C L, et al. Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems[J]. Nature, 2007, 449(7159): 213-217. doi: 10.1038/nature06111
    [18]
    BASTIAANSEN R, JAÏBI O, DEBLAUWE V, et al. Multistability of model and real dryland ecosystems through spatial self-organization[J]. Proceedings of the National Academy of Sciences, 2018, 115(44): 11256-11261. doi: 10.1073/pnas.1804771115
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (419) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return