Volume 45 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
XIAO Zhengguang, ZHANG Chunli, CHEN Weiqiu. Analysis of Nonlinear Multi-Field Coupling Mechanics of Piezoelectric Semiconductor Beams via PINNs[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1288-1299. doi: 10.21656/1000-0887.450070
Citation: XIAO Zhengguang, ZHANG Chunli, CHEN Weiqiu. Analysis of Nonlinear Multi-Field Coupling Mechanics of Piezoelectric Semiconductor Beams via PINNs[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1288-1299. doi: 10.21656/1000-0887.450070

Analysis of Nonlinear Multi-Field Coupling Mechanics of Piezoelectric Semiconductor Beams via PINNs

doi: 10.21656/1000-0887.450070
Funds:

The National Science Foundation of China(12172326;11972319)

  • Received Date: 2024-03-19
  • Rev Recd Date: 2024-04-26
  • Available Online: 2024-10-31
  • Publish Date: 2024-10-01
  • Piezoelectric semiconductors (PSs) possess the characteristics of coexistence of piezoelectric and semiconductor properties and have broad application prospects in new multifunctional electronic/optoelectronic devices. It is very important to theoretically analyze multi-field coupling mechanical responses of PS structures under external loads. However, the governing equations describing the multi-field coupling mechanical behaviors of PS structures contain physically nonlinear current equations. On the other hand, many semiconductor devices typically operate under large deformation, which raises a geometrically nonlinear problem. The presence of physical and geometric nonlinearity poses challenges to the solution of the problem. Herein, for PS beam structures, a method based on physics informed neural networks (PINNs) was established to efficiently solve their nonlinear multi-field coupling responses. Through successive elimination of carrier-related terms and piezoelectricity-related terms from the constructed PINNs, the proposed method can be reduced to the cases of piezoelectric and pure elastic structures, respectively. With the proposed PINNs, the multi-field coupling responses of a PS beam under static uniform pressure were predicted. Numerical results show that, the proposed method can effectively solve the nonlinear multi-field coupling problems of the PS, piezoelectric and pure elastic structures. Relatively, it exhibits higher accuracy in solving piezoelectric and pure elastic structures.
  • loading
  • [2]QIN Y, WANG X D, WANG Z L. Microfibre-nanowire hybrid structure for energy scavenging[J].Nature,2008,451(7180): 809-813.
    HICKERNELL F S. The piezoelectric semiconductor and acoustoelectronic device development in the sixties[J].IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2005,52(5): 737-745.
    [3]LIU Y, YANG Q, ZHANG Y, et al. Nanowire piezo-phototronic photodetector: theory and experimental design[J].Advanced Materials,2012,24(11): 1410-1417.
    [4]HAN W H, ZHOU Y S, ZHANG Y, et al. Strain-gated piezotronic transistors based on vertical zinc oxide nanowires[J].ACS Nano,2012,6(5): 3760-3766.
    [5]WANG Z L. Piezopotential gated nanowire devices: piezotronics and piezo-phototronics[J].Nano Today,2010,5(6): 540-552.
    [6]罗逸璕. 层状压电半导体结构的多场耦合力学行为分析[D].杭州: 浙江大学, 2019. (LUO Yixun. Analysis of multi-field coupling mechanical behavior of laminated piezoelectric semiconductor structures[D].Hangzhou: Zhejiang University, 2019. (in Chinese))
    [7]梁超, 张春利. 恒磁场作用下压磁/压电半导体复合圆柱壳的耦合响应分析[J].固体力学学报, 2020,41(3): 206-215. (LIANG Chao, ZHANG Chunli. Analysis of multi-field coupling responses of piezomagnetic/piezoelectric semiconductor cylindrical shell under a constant magnetic field[J]. Chinese Journal of Solid Mechanics,2020,41(3): 206-215. (in Chinese))
    [8]程若然, 张春利. 多个局部温度载荷下压电半导体纤维杆的压电电子学行为分析[J].力学学报, 2020,52(5): 1295-1303. (CHENG Ruoran, ZHANG Chunli. Analysis of the piezotronic effect of a piezoeletric semiconductor fiber under mutiple local temperature loadings[J]. Chinese Journal of Theoretical and Applied Mechanics,2020,52(5): 1295-1303. (in Chinese))
    [9]李德志, 张春利. 弹性纵波在压电-压电半导体周期杆中的传播[J].哈尔滨工程大学学报, 2022,43(9): 1252-1257. (LI Dezhi, ZHANG Chunli. Propagation of elastic longitudinal waves in a periodic piezoelectric-piezosemiconductor rod[J]. Journal of Harbin Engineering University,2022,43(9): 1252-1257. (in Chinese))
    [10]ZHANG C L, WANG X Y, CHEN W Q, et al. Carrier distribution and electromechanical fields in a free piezoelectric semiconductor rod[J]. Journal of Zhejiang University (Science A),2016,17(1): 37-44.
    [11]王晓媛. 一维压电半导体杆的力学行为研究[D].杭州: 浙江大学, 2017. (WANG Xiaoyuan. Research on mechanical behaviors of one-dimensional piezoelectric semiconductor rods[D].Hangzhou: Zhejiang University, 2017. (in Chinese))
    [12]CHENG R R, ZHANG C L, CHEN W Q, et al. Temperature effects on mobile charges in extension of composite fibers of piezoelectric dielectrics and non-piezoelectric semiconductors[J].International Journal of Applied Mechanics,2019,11(9): 1950088.
    [13]LUO Y X, ZHANG C L, CHEN W Q, et al. Thermally induced electromechanical fields in unimorphs of piezoelectric dielectrics and nonpiezoelectric semiconductors[J].Integrated Ferroelectrics,2020,211(1): 117-131.
    [14]ZHANG C L, WANG X Y, CHEN W Q, et al. An analysis of the extension of a ZnO piezoelectric semiconductor nanofiber under an axial force[J].Smart Materials and Structures,2017,26(2): 025030.
    [15]FAN S Q, HU Y T, YANG J S. Stress-induced potential barriers and charge distributions in a piezoelectric semiconductor nanofiber[J].Applied Mathematics and Mechanics (English Edition),2019,40(5): 591-600.
    [16]HUANG H Y, QIAN Z H, YANG J S. I-V characteristics of a piezoelectric semiconductor nanofiber under local tensile/compressive stress[J].Journal of Applied Physics,2019,126(16): 164902.
    [17]ANCONA M G, BINARI S C, MEYER D J. Fully coupled thermoelectromechanical analysis of GaN high electron mobility transistor degradation[J].Journal of Applied Physics,2012,111(7): 074504.
    [18]ANCONA M G. Fully coupled thermoelectroelastic simulations of GaN devices[C]//2012 International Electron Devices Meeting.San Francisco, CA, USA, 2012: 13.5.1-13.5.4.
    [19]ANCONA M G. Nonlinear thermoelectroelastic simulation of Ⅲ-N devices[C]//2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD).Yokohama, Japan, 2014: 121-124.
    [20]ANCONA M G. Nonlinear thermoelectroelastic analysis of Ⅲ-N semiconductor devices[J].IEEE Journal of the Electron Devices Society,2017,5(5): 320-334.
    [21]ZHAO M H, ZHANG Q Y, FAN C. An efficient iteration approach for nonlinear boundary value problems in 2D piezoelectric semiconductors[J].Applied Mathematical Modelling,2019,74: 170-183.
    [22]ZHAO M H, MA Z L, LU C S, et al. Application of the homopoty analysis method to nonlinear characteristics of a piezoelectric semiconductor fiber[J].Applied Mathematics and Mechanics (English Edition),2021,42(5): 665-676.
    [23]ZHAO M H, YANG C H, FAN C Y, et al. A shooting method for nonlinear boundary value problems in a thermal piezoelectric semiconductor plate[J].ZAMM Journal of Applied Mathematics and Mechanics,2020,100(12): e201900302.
    [24]BAO G F, LI D Z, KONG D J, et. al. Analysis of axially loaded piezoelectric semiconductor rods with geometric nonlinearity[J]. International Journal of Applied Mechanics,2022,14(10): 2250104.
    [25]PANG G, D’ELIA M, PARKS M, et al. nPINNs: nonlocal physics-informed neural networks for a parametrized nonlocal universal Laplacian operator. Algorithms and applications[J].Journal of Computational Physics,2020,422: 109760.
    [26]HAGHIGHAT E, JUANES R. SciANN: a Keras/TensorFlow wrapper for scientific computations and physics-informed deep learning using artificial neural networks[J].Computer Methods in Applied Mechanics and Engineering,2021,373: 113552.
    [27]MENG X, LI Z, ZHANG D, et al. PPINN: parareal physics-informed neural network for time-dependent PDEs[J].Computer Methods in Applied Mechanics and Engineering,2020,370: 113250.
    [28]ZHAO Q K, YANG H Y, LIU J B, et al. Machine learning-assisted discovery of strong and conductive Cu alloys: data mining from discarded experiments and physical features[J]. Materials & Design,2021,197: 109248.
    [29]LIU X, ATHANASIOU C E, PADTURE N P, et al. A machine learning approach to fracture mechanics problems[J].Acta Materialia,2020,190: 105-112.
    [30]HENKES A, WESSELS H, MAHNKEN R. Physics informed neural networks for continuum micromechanics[J].Computer Methods in Applied Mechanics and Engineering,2022,393: 114790.
    [31]ATHREYA A P, BRCKL T, BINDER E B, et al. Prediction of short-term antidepressant response using probabilistic graphical models with replication across multiple drugs and treatment settings[J].Neuropsychopharmacology,2021,46(7): 1272-1282.
    [32]RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J].Journal of Computational Physics,2019,378: 686-707.
    [33]JAGTAP A D, KARNIADAKIS G E. Extended physics-informed neural networks (XPINNs): a generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations[J]. Communications in Computational Physics,2020,28(5): 2002-2041.
    [34]RAISSI M, YAZDANI A, KARNIADAKIS G E. Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations[J].Science,2020,367(6481): 1026-1030.
    [35]HAGHIGHAT E, RAISSI M, MOURE A, et al. A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics[J].Computer Methods in Applied Mechanics and Engineering,2021,379: 113741.
    [36]REDDY J N.Mechanics of Laminated Composite Plates and Shells[M].CRC Press, 2004.
    [37]AULD B A.Acoustic Fields and Waves in Solids[M].Vol1. Wiley-Inter Science Publication, 1974.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (89) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return