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Abstract: There is increasing popularity in using high-order weighted compact nonlinear
schemes( WCNS) for complex flow simulations. The WCNS can be used in combination with
many inviscid flux splitting methods. However, it is still uncertain which flux splitting is most
suitable for the WCNS because most of the methods are devised on the basis of low-order dis-
cretization methods. It is also not very clear what will happen when these splitting methods are
mounted directly in high-order accurate schemes. In order to provide some guide for selecting
inviscid fluxes in the computation of surface heat transfer, the dissipations of the fluxes are
studied. Every inviscid flux can be expressed as a summation of a central part and a dissipation
part. All the fluxes have an identical central part which is very simple. However, different fluxes
have different dissipation parts which are more or less complicated. The analysis on the source
of flux dissipation shows that the dissipation is nearly proportional to flux jumps on grid inter-
faces. Numerical experiments show that high-order schemes usually produce far less flux jumps
than low-order schemes in smooth regions, and logically the flux dissipations are quite lower. 3
canonical flows including hypersonic shock wave/boundary layer interactions( SWBLI) are sim-
ulated to show the influence of inviscid fluxes on heat transfer computing. Finally, a suggestion
is given for selecting inviscid fluxes based on the dissipations and shock instabilities of van
Leer’ s flux splitting, the Steger-Warming (SW) flux splitting, the kinetic flux vector splitting
(KFVS), Roe’s flux splitting, the AUSM ( advection upwind splitting method ) -type flux split-
ting and the HLL-type flux splitting.
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Introduction

Traditionally, 2nd-order accurate discretization schemes were widely used in applica-
tions of aerodynamics because of their simplicity, robustness and fast convergence. Re-
cently, more and more people used high-order schemes for simulations and studies of tur-
bulent flows, separated flows, shock wave/boundary layer interactions and computational

[1-2

aeroacoustics'>. Compared to low-order schemes, high-order schemes are regarded as

less robust and more complicated for understanding and coding. With the progress in com-
putational fluid dynamics ( CFD) within the last 10 years, the poor robustness of high-or-
der finite difference methods (FDMs) was greatly improved in view of the latest achieve-

ments of geometric conservation law'*’ and multi-block grid treatments'*”

[2,6-7]

. Recent pro-
gresses showed that some high-order schemes were also applicable on grids involving
real aircraft/spacecraft configurations, which indicated that high-order schemes may also
be suitable for solving engineering-oriented problems in CFD.

For high speed flows with shock waves, Pirozzoli"* commented that the discretization
schemes shall be accurate as well as low-dissipation in smooth flow regions, and simulta-
neously, these schemes shall capture shock waves stably and smoothly without obvious
numerical oscillations. In the past 20 to 30 years, lots of studies have been done in pursu-
ing these 2 conflicting goals, and many high-order schemes have been devised. Besides the
weighted compact nonlinear schemes'®’ | there are many others high-order schemes like the

discontinuous Galerkin schemes''” | the compact schemes with total variation diminish-

ing'"""*)  the weighted essentially non-oscillatory schemes''*', the spectral volume

[15

schemes' "’ and the monotonicity preserving schemes''®’. The WCNS is highly valuable in

solving a wide range of fluid problems, including incompressible, compressible and hyper-

[245.0718] However, despite the achieve-

sonic flows, even on complex computational grids
ments in high-order CFD, high speed flow simulations are still facing many challenges like
numerical instabilities due to shock wave dominated strong nonlinear interactions including
SWBLIs, shock/shock interactions, shock/shear layer interactions and shock/vortex inter-
actions. The reliability of CFD is especially debatable for hypersonic flows in consideration
of shock anomalies (such as numerical oscillations) and heating prediction capabilities' "’ .

Shock-capturing ( or upwind) schemes usually need some kind of inviscid flux splitting
methods to construct the fluxes at cell edges. Numerical oscillations, numerical dissipa-
tions and carbuncle phenomena were reported, more or less, related to the construction
methods for inviscid fluxes. Kitamura et al.''***) made a wide range of investigations on the
properties of several inviscid fluxes, but only based on low-order spatial schemes. Other
“linvestigated the shock instability of quite a few invis-
cid fluxes by a 5th-order WCNS. Both Kitamura’ s results and Tu’ s results show that all the

fluxes investigated in ref. [ 19-23] may lead to shock instabilities which will degrade the

than low-order schemes, Tu et al.'

computation accuracy or even cause computation failures (such as negative pressure or
density ). Surface heating computations are usually deemed as tough tasks in CFD. Kitamu-
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ra et al. suggested that, for hypersonic heating computations, inviscid flux functions
should satisfy the following 3 conditions: (a) robustness and shock stability, (b) total en-
thalpy conservation, (c) resolution of boundary layer and temperature gradient. Unfortu-
nately, no fluxes investigated by Kitamura et al. can concurrently satisfy all the 3 condi-

tions. Kitamura et al.'*

reported that failure to satisfy either the 1st item or the 3rd one
may lead to poor prediction of surface heating. Kitamura et al.'*) also reported that the
lack of the 2nd item can be largely supplemented with 2nd-order schemes other than 1st-
order schemes, while 2nd-order schemes were not enough to overcome the deficiency in
all the 3 items, especially in the 3rd one. Up to now, it is still not known whether high-or-
der discretization schemes can or can’t compensate the shortcomings of inviscid fluxes. As
there is increasing popularity of using high-order schemes, it is high time to investigate
how much high-order spatial schemes can compensate for the deficiency of inviscid fluxes
for hypersonic heating computations.

Many evidences ( e.g. the tests in ref. [ 19]) show that other factors, such as limiters,
spatial accuracy, reconstructed variables and aspect ratios of grids, do have as much or
more impacts on numerical solutions than flux functions. Instead of studying all these fac-
tors, the present work only focus on the combination of the 5th-order spatial interpolation
of the WCNS and inviscid flux constructions. Although there are many flux construction
methods, they can be categorized into 2 splitting groups or some hybrid ones. The 2 groups
are the flux vector splittings ( FVSs) and the flux difference splittings ( FDSs). The studies
reported in literatures show that FDSs are usually less dissipative and likely to give sharper
resolution for contact discontinuities compared with FVSs, but they are more likely to pro-
duce carbuncle phenomena. Users may feel puzzled when facing the problem of choosing a
suitable inviscid flux for high-order schemes. In ref. [ 23 ], the 5th-order WCNS was applied
to evaluate the shock instability of many inviscid fluxes, the shock instability therein
showed much difference from that of low-order schemes. Because the left-to-right jumps of
flow variables at cell edges where inviscid fluxes are constructed usually decrease with
higher-order spatial reconstructions ( or interpolations ), Pandolfi and D’ Ambrosio"*"
claimed that carbuncle-like features are more evident in the plain 1st-order integration
schemes than in more accurate reconstruction schemes. However, the investigation in ref.
[23 ] indicates that this statement may not be true for shock instability. High-order
schemes may be less likely to undergo visible carbuncle phenomena, but be more likely to
encounter other shock instabilities such as numerical oscillations.

In order to provide some guide to choose suitable inviscid fluxes for high-order numer-
ical schemes, this paper will further investigate the properties of inviscid fluxes in the com-
putation of heat transfer, especially with the SWBLI.

1 Spatial schemes and flux splittings

1.1 Governing equations and spatial schemes
The time-dependent compressible Navier-Stokes/Euler equations are transformed in
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curvilinear coordinates and expressed in a conservative form as
00 oE oF oG (E, oF, oG,
+ — — =5l —+ —+ — |,
0 am o

where 0 =0Q/J, Q =[p ,pu,pv,pw,pE]" are conservative variables, E, F, G are inviscid flu-

+— 4+ (1)
ar  9¢ oam A
xes, and E’v, I'N’L,, Gl, are viscous fluxes, s = 0 for Euler equations and s = 1 for Navier-Stokes
equations. Details of the equations are omitted here for they can be easily found elsewhere.
For 1D or 2D problems, we only need to remove the corresponding unnecessary terms in
eq.(1).
The inviscid ( Euler) terms are discretized with the 5th-order WCNS ( WCNS-E-5) ',
Take the discretization of the invsicid term along the ¢ direction as an example ;
ok, 75 " 25 N 3

=—(E. - . -—(E. - FE. + —

ag 64h( i+1/2 L—]/2> 384h< i+3/2 1—3/2) 640h

The inviscid fluxes at cell edges can be computed with an FVS or an FDS. The van

(Ei+5/2 - Ei—S/Z)‘ (2)

Leer splitting'>’ , the Steger-Warming splitting'**' and the KFVS'? are 3 typical FVSs. Roe’
s flux'® | the AUSM®'*?*") and the HLL'***’ are 3 typical FDSs. All the fluxes can be writ-
ten as

Eip =E(U} 0, Ul (3)
where the flow variables U,,, and U, are located at cell edges, and can be computed
with the various reconstruction or interpolation methods. In this paper, a 5th-order nonlin-
ear weighted interpolation, a 2nd-order TVD scheme and a 1st-order scheme (upwind) are
applied. The 5th-order interpolation can be found in ref. [ 9 ]. The 2nd-order TVD scheme is
the non-oscillatory and non-free-parameter dissipative ( NND ) scheme'*'. The NND
scheme is realized by setting 9£./9¢ = (E.,,, — E._,,,)/A¢, and the cell-edge flow variables

are acquired by

1
th =U, +?mmd(Um -U,U, -U_,),

[

(4)

1
UIR+1/2 =Uy,, - ?mmd(UHl -U,,U,, -U,,),

where “mmd” is a minmod limiter. The 1st-order upwind scheme is fulfilled by fixing mmd
=0.

The same discretization procedure is applied to the other directions of the curvilinear
coordinate. The inviscid fluxes investigated below are listed in table 1. The entropy fix a-
dopted in ref. [ 23] is also used in this paper.

The viscous terms are discretized with 2 different methods. The 1st method is a 2nd-
order central scheme and is used in combination with the NND scheme or the 1st-order up-

wind scheme mentioned above. The 2nd method is a 6th-order one, and is used in combi-

@® AUSM-type fluxes are sometimes deemed as a hybrid of an FDS and an FVS.
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nation with the WCNS-E-5. For the 6th-order method, the cell-edge and cell-node stag-
gered method of Tu et al.'*"’ is used.

The time discretization is performed with the 3rd-order TVD-type Runge-Kutta integra-
tion method'"*' and the standard lower/upper symmetric Gauss-Seidel method for unsteady

problems and steady problems, respectively.

Table 1 A list of the inviscid fluxes investigated

splitting type FVS
flux type Steger-Warming van Leer KFVS
entropy fix or subtype O, =0 65, =0.1 - -
splitting type FDS
flux type Roe AUSM HLL
entropy fix or subtype 85, =0 85, =0.1 AUSMPW AUSMPW + HLLC p-based HLLC Roe-based HLLE
Note: (a) Entropy fix: [ A |= W, where A, is the eigenvalue, x = £ormn, and §;, = 0.1.

(b) HLLC p-based: the wavespeed is estimated by the pressure correlation; HLLC Roe-based :

the wavespeed is estimated by Roe’s average /.

A proper algorithm for cell-edge metrics (such as EU.H ,,) is also very important for
FDMs. All the metrics in this paper are acquired with the conservative metric method in ref.
[38].

We would like to remind that, besides spatial accuracy orders and flux functions,
many other factors such as limiters (if there are) , viscous discretizations and grid alloca-
tions, all may have great influence on the stability and accuracy of numerical simulations.
However, our main interest here is to find some guide to select inviscid flux for the 5th-or-
der inviscid discretization, or more specifically, the WCNS-E-5. The 1st- and 2nd-order
schemes herein are for readers’ convenience of comparisons since many results of 1st- and
2nd-order methods can be easily found in the literatures.

1.2 Flux dissipations
No matter what kinds of flux splitting methods are used, a flux function may be ex-
pressed as the sum of a central part EC and a dissipation part ED as follows
E(U",U") =E_, +E,. (5)
The central part is quite simple and can be written as
B, :E(U") + E(U“).
2
The dissipation part is more or less complicated and different flux functions produce

(6)

different dissipations. An instructive expression for the dissipation can be written as

E, ~ C(U")AU, (7)
where AU = | U" — U" | denotes the jumps between left-hand flow values and right-hand
flow values at a cell interface; C(U™) is the coefficient for the dissipation, and is a func-

tion of U™ which denotes some intermediate flow values between U" and U" . The dissipation
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is nearly @ proportional to the flow jumps at a cell interface in smooth regions.

Take Roe’s flux as the first example .
~ 1
Eg“e=—5| A" AQ, (8)

where AQ =Q" - Q"and | A" | =R""
side and right-side cell-edge flow variables. We can find from eq.(8) that
C( Um) - _ ‘ARue ‘/2‘

The 2nd example is the Steger-Warming flux. Its dissipation part can be written as

A" | (R") 'is acquired by Roe’ s average of the left-

o 1 1
ER =-5\AL\AQ-5AAQR, (9)

where AA = [A(Q") |- |A(Q") | is the jump of the Jacobian matrix which is determined by
the flow jumps. On the right-hand side of eq.(9), the 1st term is similar to the dissipation
part of Roe’ s flux, while the 2nd term implies that the Steger-Warming flux is generally
more dissipative than Roe’ s flux.

A more complex example is the advection upstream splitting method by pressure based
weight functions (AUSMPW) **) which is also regarded as a hybrid of an FVS and an FDS.
As the AUSM-type fluxes split the inviscid flux vector into the so-called convection and
pressure terms, and the 2 terms are reconstructed with different methods, then the dissipa-
tion terms of these fluxes are very complicated. Even though, the dissipation terms can al-
so be written as functions nearly proportional to flow jumps.

The AUSMPW flux can be written as

FAUsMPW Ec + Eer[\)USMPW’ (10)
here the central term is also eq.(6), while the dissipation term is much complex. We only

consider the 1D case. Suppose

@ =[p,pu,pH]", P=[0,p,0]" (11)
The dissipation is split into convection and pressure terms as
Er[\)ITSI\TPW' - Fg’ + Fg (12)

Then the dissipation terms can be written as follows

‘ul,,R ‘

1) If |Ma, |= =1,
' Cin
- (/)]
[—u;+uﬁzuﬁa)}A(P—2LAu, ifm,, =0,
F? = (13)
D
Uy, u, — ‘u,‘ D,
-t w|AD - —Alul, else,
2 2 2

@ “nearly” here means “approximately” but also depends on the status of the left and the right sides. There is
an example of exception: if U" and U" satisfy the Rankine-Hugoniot relations, the dissipation parts can reduce to 0, e-
ven though | U® — U" | may be very large (e.g. crossing steady shock waves with large upstream Mach numbers). In

smooth region, larger | U" — U" | usually means more dissipation.
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P sign(uyg)
F* == —“Asign(u) - 2% Ap, (14)
2 2
‘ul,,R‘
2) If |Ma, ,|= <1,
’ Cin2
= ¢, P AMa®™ + ¢\, Mag [,(1 + f) o AD ~
1 . .
? A(Du) + D uf, AP[T ’ ifm,, =0,
F} = (15)
- 01/2(15“AM(LB+ - ¢, ,Ma, \B(l +f)wAdD +
1 .
5 M@0 + Baf; Ay, else,
3+4 1+8 4
Fr=- Y A(PMa) + Y A(PMA?) —%A(PMaS). (16)
‘uL‘ ‘uR‘
3) If |Ma, |= <1, |May|= =1,
Ci2 Ci2
1
¢, ,May ‘BwAtp - ?[(PLAuL* +A(Dgu” )] +
Ma' | ¢, , @[ Ap,", ifm,, =0,
Ff))— L 18€12 S Apy 1 12 (17)
- ¢, ,Ma, \B(l +fi)wAd — ?[épﬁAu; +A(Du”)] +
Ma; ‘BCI/ZQRf: Aplf ’ else,
.1 .
Fl =P AN, - ?A(&gn(Ma))P). (18)
‘uL‘ ‘uR‘
4) If |Ma, | = =1, [Ma,|= <1,
172 Cin
- 1 *® S
¢ ,Mag ‘5(1 +fH)wA¢ - ?[QLA<U‘L ) + A(¢Hu )]+
Ma;, | ¢, D, fr Ap;: ifm,=0,
Fg, _ R 1gC12 Sr fR 172 (19)
-c,,Ma; ‘BwAlI) - ?[(DRA(u; ) +A(Du")] +
May \Bcl/zprf,: Apy else,
F) =-P A, - ?A(mgn(Ma)P). (20)

In egs.(13) to (20),
AP =@, - D, Alul= [ug |- |u,],
Asign(u) =sign(uy) —sign(u, ), AP =P, - P,
AMd"* = Mdl* = Md?*, A(®Pu) = Ppu, - Du,,
Apig = Pig = Py Bupy Tupg ~uy,,

A(PMa) = PyMa, - P Ma,, A(PMa’) = P Ma; - P Ma; ,
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A(PMd’) = PyMa}, - P, Ma; ,
A(‘-I)RU* ) =DPruy —Diu,,, A(d;LU* )=Du, - Dyu,y,,
A(sign(Ma)P) = sign(May )Py, - sign(Ma, )P, ,
AX:,K :X(MaL,H> _X(Sign(Ma’L,R) ),
where
Uy g

. 1
MaL,R =—, Maffn = ':4(MaL,R * 1)2 +B<Mai,R - 1)2} (1 +fL,R> ,

Ci2
1
iZ(MaL'R +1)? £B(Ma; , - 1), if |Ma,,|<1,

Ma],i,R ‘B = 1

?<Ma[,,|{ + ‘M“L,R ), else,

3 1
X(Ma) = (4 + aj Ma - (4 + ZaJ Ma® + aMa’®,

— — + -
Uy =M€, My, =Ma; ‘[3:1/8 + May ‘B:mn

2
o~ ~ Cir . _ 2y -1
Cipp = mln(cL’CR> » CLr = v CLr T + 1 HL,R ,
max( | Uy g | i) Yy

Y P
5 P, = L‘a3/16pL+PR‘a3/16pR’
1 p
x y L3 ¥y
4 X min| —,— | = 3, if — < min| —,—| < 1,
Cpl(x?y>_ 4 y X
else,

» ) ' ‘u 02
(IR - 1) Cpl(pL,R Proi) X ‘MG’L_,R ‘Bzo | mln(l, - J ’

Py Cin

fL,R = .
if \MaL,R\$ 1,
0, else,

1

Z(Ma +1)3(2 F Ma) *aMa(Ma* - 1)?, if |[Mal< 1,
P, = :

?(1 +sign(Ma) ), else,
w =w(p, ,pr) =1 — min GL,pRj .

R PL

2 Numerical tests

Egs.(8),(9) and (12) indicate that flux dissipations are nearly proportional to flow
jumps with coefficient C(U™) as a function of some intermediate flow values between U"
and U" . In most cases, low jumps, namely small values of AU, result in low flux dissipa-
tions. It may be expected that the cell-edge flow jumps acquired through high-order recon-
structions ( or interpolations) are usually lower than those through low-order reconstruc-

tions (or interpolations). Then, for high-order schemes, flux dissipations are usually low
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and their unfavorable influences on the accuracy of numerical results shall also be low.
These statements will be illustrated by the following tests.

2.1 Lax’s shock tube

The 1st test is chosen to investigate the properties of different fluxes in resolving the
contact discontinuity as well as the shock wave. 1D Euler equations are solved numerically.

The spatial domain isx € [0,1], and the initial conditions are defined as

[p,u,p] =10.445,0.698,0.352 8], if x < 0.5, (21)
[p,u,p] =[0.500,0.000,0.517 0], if x = 0.5.
- - - SW,d=0
————— van Leer
i ——= Roe, dz5=0
12 s  AUSM
o AUSMPW
| o AUSMPW+
1ok >  KFVS
<« HLLC
HLLE
exact ]
P08 50 .

1.0
- - - SW,d5=0 -
----- vanLe‘er' SWL 05i=0 ”
——— Roe, §.=0 van Leer ks
> Ofix Roe, §45,=0 i
12 4 AUSM AUSM™ '
o  AUSMPW ASEMPW b
o AUSMPW+ AUSMPW+
> KFVS KFVS
1.0 « HLLC Hic
+  HLLE HLLE 4
—— exact exact |
p 08 P OB 050
0.45 4
0.6 0.6 0.40
. . 035Lesa 4 L
. 0.66 0.69 !
0.4
m 04& ‘ : - )
0 . 0 0.2 0.4 . 0.6 0.8 1.0

(b) The NND scheme (2nd-order)
Fig. 1

(¢) The WCNS scheme( 5th-order)
Results of Lax’s shock tube
We computed the solution up to time ¢ = 0.15 with 200 cells. Numerical results are given
in fig. 1. Obvious improvement is reached with the increase of the accuracy order of spatial
schemes. In contrast to the 1st-order upwind scheme and the 2nd-order NND scheme, the
high-order WCNS gives almost indistinguishable differences between different fluxes,
which indicates that the influence of inviscid flux functions on this flow will be diminished

with the increase of the accuracy orders of spatial discretization schemes. In order to study
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the resolving powers of different fluxes for the contact discontinuity more clearly, we de-
fine the averaged errors of density in the domain of x, € [0.6, 0.825] which contains the

contact discontinuity ,

Z ‘ num __ exut ‘ (22)

The averaged errors of density are given in fig. 2. It can be seen that, when the 1st-order
upwind scheme is applied to the inviscid fluxes, the HLLE flux shows the highest dissipa-
tion for this contact discontinuity, while Roe’ s flux, the HLLC and the AUSMPW show the
lowest dissipations. Fig. 2 also indicates that the differences between the fluxes are only
visible for the Ist-order scheme. When the high-order scheme is used, the difference be-
tween the highest dissipative flux (HLLE) and the lowest dissipative fluxes ( Roe’ s, the
HLLC and the AUSMPW) is trivial.

0.14

DI

AN

0.2

—A— Ap, Ist-order
—8— Ap,NND
—6— Ap, WCNS-E- 5

P 0.8 0.1 Ap
0.6

0.4

Fig. 3 Density distributions and their jumps at cell edges (Ap = |p" —p' |)

The differences between fluxes are neglectable for the high-order method because the
cell-edge jumps (AU,,,, =U\,, - Ul,,) are much low. The flow jumps occur due to the
different reconstructions ( or interpolations) at the left/right side of the interface. Fig. 3
shows the density jumps near the contact discontinuity. It is evident that the Ist-order

scheme produces the highest jump, the 2nd-order scheme (NND) produces the intermedi-
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ate jump, and the 5th-order scheme ( WCNS-E-5) produces the lowest jump. The lowest
jump is less than 2% of the highest jump. As flux dissipations are nearly proportional to the
jumps, from the view point of dissipation, the high-order schemes are less sensitive to flux
construction methods than the low-order schemes.
2.2 Viscous hypersonic flow around a hemicylinder

This example is used to investigate the influences of different inviscid fluxes on the
computations of stagnation heat transfer rates in the conditions of different grid densities
and spatial accuracy orders. The freestream Mach number is 5.73, static temperature 39.67
K, surface temperature 210.2 K, y = 1.4 and Pr = 0.77. The Reynolds number based on the
cylinder radius is 2 050. A numerical solution is available in ref. [ 39 ] where a shock-fitted
Chebyshev spectral method is used.

1.5F

WCNS

05 O Kopriva

6/(%)

Fig. 4 The grid (left) , the pressure contour(middle) and the surface pressure (right)

6 grids are generated for this problem. A typical grid and the solution are given in fig.
4. The minimal grid size h, of the coarsest grid is 20/2 050 of the cylinder radius. Thus the
grid Reynolds number Re, (based on the minimal grid size) is 20. The Re, of the 6 grids can
be found in tables 2 ~4 which also contain the normalized stagnation heat transfer rates
(normalized by p_u’, ). Symbol “unst” in the 3 tables denotes that the carbuncle phenome-
non appears or the solution is unstable. Table 4 indicates that the computed results of the
high-order method converge at 1.248 x107>. Fig. 5 shows the stagnation heatings vs. the grid
Reynolds number (Re, ) . Fig. 5(a) and (b) indicate that the results of the 1st-order meth-
od and the 2nd-order method show the trend of converging at 1.248 x10> with the refine-
ment of the grids.

This case shows the signal that the high-order method may be superior to the 2 low-or-
der methods in converging to grid-independence results. In addition, the followings can be
observed :

1) The Ist-order method is more sensitive to grid sizes than the 2nd-order and the 5th-
order methods. When the 1st-order scheme is used, the FVSs (such as SW, KFVS, van
Leer) generally require smaller grid sizes for heating computation than low dissipative
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FDSs (such as AUSMPW and Roe’ s flux). When the spatial accuracy order increases, the

influences of inviscid fluxes on the stagnation heat transfer rate will decrease.

Table 2 Stagnation heat transfer rates computed with the 1st-order upwind scheme

grid point 31x31 61x61 121x121 181x181 241x241 361x361
Rey, 20 10 5 3.33 2.50 1.67
SW unst unst unst unst unst unst
SW-fix 4.812E-3 6.088E-3 7.683E-3 8.637E-3 9.273E-3 1.007E-2
VL 5.870E-3 7.472E-3 9.083E-3 9.905E-3 1.041E-2 1.252E-2
Roe unst unst unst unst unst unst
Roe-fix 8.314E-3 9.578E-3 1.067E-2 1.116E-2 1.144E-2 1.175E-2
AUSMPW 1.238E-2 1.231E-2 1.233E-2 1.236E-2 1.239E-2 1.243E-2
AUSMPW + 5.616E-3 7.236E-3 8.891E-3 9.748E-3 1.073E-2 1.088E-2
KFVS 6.523E-3 7.809E-3 9.185E-3 9.928E-3 1.040E-2 1.095E-2
HLLC-p 1.437E-2 unst unst unst unst unst
HLLC-Roe 1.441E-2 unst unst unst unst unst
HLLE 5.024E-3 6.148E-3 7.557E-03 8.440E-3 9.049E-3 9.841E-3

Table 3 Stagnation heat transfer rates computed with the 2nd-order NND scheme

grid point 31x31 61x61 121x121 181x181 241x241 361x361
Re, 20 10 5 3.33 2.50 1.67
SW 1.308E-2 1.293E-2 1.268E-2 1.255E-2 1.255E-2 1.254E-2
SW-fix 1.354E-2 1.319E-2 1.279E-2 1.263E-2 1.260E-2 1.256E-2
VL 1.349E-2 1.293E-2 1.260E-2 1.256E-2 1.255E-2 1.282E-2
Roe 1.312E-2 unst unst unst unst unst
Roe-fix 1.378E-2 1.294E-2 1.258E-2 1.255E-2 1.254E-2 1.251E-2
AUSMPW 1.274E-2 1.225E-2 1.251E-2 1.243E-2 1.247E-2 1.247E-2
AUSMPW+ 1.348E-2 1.285E-2 1.250E-2 1.254E-2 1.254E-2 1.251E-2
KFVS 1.410E-2 1.329E-2 1.273E-2 1.264E-2 1.260E-2 1.255E-2
HLLC-p 1.312E-2 unst unst unst 1.248E-2 unst
HLLC-Roe 1.312E-2 unst unst unst 1.248E-2 unst
HLLE 1.441E-2 1.364E-2 1.290E-2 1.275E-2 1.269E-2 1.260E-2

Table 4 Stagnation heat transfer rates computed with the 5th-order WCNS scheme

grid point 31x31 61x61 121x121 181x181 241x241 361x361
Re, 20 10 5 3.33 2.50 1.67
SW 1.263E-2 1.256E-2 1.249E-2 1.243E-2 1.247E-2 1.248E-2
SW-fix 1.264E-2 1.257E-2 1.249E-2 1.244E-2 1.247E-2 1.248E-2
VL 1.274E-2 1.254E-2 1.238E-2 1.246E-2 1.247E-2 1.248E-2
Roe 1.336E-2 1.271E-2 1.237E-2 1.248E-2 1.248E-2 1.248E-2
Roe-fix 1.313E-2 1.269E-2 1.241E-2 1.246E-2 1.248E-2 1.248E-2
AUSMPW 1.312E-2 1.260E-2 1.249E-2 1.247E-2 1.247E-2 1.248E-2
AUSMPW + 1.274E-2 1.253E-2 1.240E-2 1.247E-2 1.247E-2 1.248E-2
KFVS 1.282E-2 1.263E-2 1.239E-2 1.245E-2 1.247E-2 1.248E-2
HLLC-p 1.336E-2 1.271E-2 1.242E-2 1.248E-2 1.248E-2 1.248E-2
HLLC-Roe 1.336E-2 1.271E-2 1.250E-2 1.248E-2 1.248E-2 1.248E-2

HLLE 1.261E-2 1.259E-2 1.245E-2 1.248E-2 1.248E-2 1.248E-2
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2) The effects of inviscid fluxes on the accuracy (not on the numerical stability) of
computed resutls can be effectively eliminated through either high-order discretizations or
grid refinement, which suggests that other factors such as viscous discretizations and limit-
ers shall be considered in advance of more accurate simulations.

o SW-fix
0.014F- ¢ van Leer
O Roe-fix
Q0taf g R SR S e
. o o 5
A
~ \»6 fe)
0.010} TN
o
o,
0.008 - . bt
&~
- - - AUSMPW ~S
0.006+ & AUSMPW+ ®
————— KFVS
—— HLLE =
1 1 1 1 J
0.004 5 10 15 2025
Re,,
(a) The Ist-order upwind
0.014[ 0.014[
0.012 0.012[
0.010[ 0.0101
o o SW-fix o o SW-fix
0.008F & van Leer 0.008+ & van Leer
O Roe-fix O Roe-fix
- - - AUSMPW - - - AUSMPW
0.006+ &  AUSMPW+ 0.006} & AUSMPW+
----- KFVS --== KFVS
—— HLLE —— HLLE
4 1 1 1 1 J 1 1 1 1 J
0.004 5 10 15 2025 0-004 S 10 15 2025
Re,, Rey,
(b) The NND (2nd-order) (c¢) The WCNS (5th-order)

Fig. 5 The grid convergences of the stagnation heat transfer rates

2.3 SWBLI of an axisymmetric hollow-cylinder flare
It is well known that hypersonic flows exhibit many difficulties in CFD because of lots
of special phenomena and flow characteristics, such as compressibility effects, real gas

effects, strong shock waves and SWBLI which may induce separations and heat flux en-

120.2.90] This test is chosen to examine the flux properties in simulating SWBLI.

hancements*
The configuration is shown in fig. 6 (a). This is an axisymmetric hollow cylinder with its
symmetry axis along the flow direciton. A 30-deg. flare adheres to the cylinder at the down-
stream end. The static temperature of the incoming mean flow is 120.4 K, and the Mach
number is 10.3. The Reynolds number is 25 347 (based on L = 4.004 in(1 in=2.54 cm) ).
The no-slip wall condition is applied to the surface with an isothermal temperature of 295.2
K. The flow medium is pure nitrogen, which can minimize chemical nonequilibrium effects.

Please refer to ref. [ 41 ] for more details about the windtunnel experiments. The studies of
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Kirk and Carey'*' and the references therein show that the gas can be regareded as caloric-
ally perfect.

8.6601

4.004

A

$2.559 (1)1.77*2
Y104

o

2.233
4.847

(a) The model configuration (unit; in) (b) The 231x81 grid

(¢) The 15 equally spaced temperature contours
Fig. 6 The model configuration, the grids and temperature contours
for the hollow-cylinder flare

3 computational grids are used in this test. The coarse grid contains 231x81 ( stream-
wise x wall-normal) nodes, and the medium and fine grids contain 461x161 nodes and 691
x241 nodes, respectively. The coarse grid is shown in fig. 6(b) , and the computed temper-
atures on the coarse grid are shown in fig. 6(c). Fig. 7 shows the heat transfer rates and
pressure coefficients computed with the WCNS-E-5 scheme for the coarse mesh. One can
find that the influences of different inviscid fluxes on the computed results are not very ob-
vious. A close examination of the numerical solutions shows that the largest differences be-
wteen the computed results from variant flux functions occur at the maximum values. The
maximum difference between the heat transfer rates is nearly 11.4% , and the maximum
difference between the pressure coefficients is nearly 3% . The entropy fix shows trivial in-
fluence on the results except the maximum heat transfer rate and the maximum pressure
coefficient, e.g. the entropy fix causes the maximum heat transfer rates to decrease by 9.
6% and 8.7% for Roe’s flux and the SW flux, respectively. Grid refinement can effectively
reduce the influence of flux functions. Fig. 8 shows the numerical results from the medium
grid. It is obvious that all the fluxes produce almost identical results. The maximum differ-
ences in heat transfer rates and pressure coefficients are only 2.9% and 2.5% , respectively.
However, as shown in fig. 9, compared with the WCNS-E-5 scheme, the 2nd-order method
are much more sensitive to grid density.

Because of the strong SWBLI, there is a separation bubble at the compression corner.
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The detachment point and the reattachment point of the separation bubble can be clearly i-
dentified in fig. 10. At the reattachment point there are local high temperature gradients,
high pressure loads and high surface heat transfer rates (fig. 7 to fig. 9). The surface pres-
sure and heat transfer rate get their maxima at an x/L value of approximately 1.45, which is
slightly downstream from the reattachment point. Fig. 7 and fig. 10(a) show that, when
the high-order method is used, only KFVS gives a slightly smaller separation bubble on the
coarse grid, which indicates that KFVS contains the highest dissipation among the tested
fluxes for the present flow. However, the 2nd-order method tends to give a smaller separa-
tion bubble. As shown in fig. 9 and fig. 10(b), compared with the high-order method, the
2nd-order method is more sensitive to grid density and tends to give a smaller separation
bubble, e.g. its separation bubble on the coarse grid is approximately 34% smaller than
that of the high-order scheme on the same grid. Once the grid is refined, the separation
bubble will increase. This phenomenon is consistent with the observation that the size of a

[42]

laminar separated bubble will grow when the Reynolds number increaes ™. This phenome-

non indicates a low-density grid adds additional numerical diffusion with the low-order

scheme.
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—— VL
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0.4
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0.2 i
pesEe-gf O exp. Re=25347 ;
= 1 1 1 1 i )
00 0.5 7.0 T3 2.0 L1053 140

Fig. 7 Flux comparison of heat transfer rates and pressure coefficients acquired with the
WCNS-E-5 method on the 231x81 grid( the right-hand diagrams are the enlarged
parts around the peak values of the left-hand diagrams)
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Fig. 8 Flux comparison of heat transfer rates and pressure coefficients acquired with the
WCNS-E-5 method on the 461x161 grid( the right-hand diagrams are the enlarged
parts around the peak values of the left-hand diagrams)

Fig. 7 and fig. 8 indicate that fluxes’ influences on the accuracy of numerical results
are small for the high-order scheme, and can be effectively diminished through grid refine-
ment. However, for low-order schemes, it was reported in literatures that the flux func-
tions had strong influences on both shock instability and surface heating computations' %" .
Our computation tests tell that both the flux functions and the grid density have direct in-

fluences on the results from low-order schemes.
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K | " §
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1 J
g 1.4 1.6
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Fig. 9 Comparison between the high-order scheme and the low-order scheme for the
hollow-cylinder flare based AUSMPW flux( the right-hand diagrams are the

enlarged parts around the peak values of the left diagrams)
It can be found from fig. 7 to fig. 9 that the peak heat transfer rates measured in the
wind tunnel exceed the computed values, and similar results were reported in ref. [ 42 ]
and the references therein. The reasons for this discrepancy are still unknown.
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(a) Acquired with the high-order methods (b) Comparison between the high-order and

2nd-order schemes

Fig. 10 The axial component of the skin friction coefficient

3 Concluding remarks

Inviscid fluxes are divided into central terms and dissipation terms. The central terms
are acquired by averaging the left-hand values and the right-hand values at cell interfaces
(cell edges), while the dissipation terms are more or less complicated and different flux
functions have different dissipations. The analysis on inviscid fluxes shows that flux dissi-
pations can be computed by multiplying cell-edge flow jumps by some intermediate flow
values between left-hand and right-hand values. Then, flux dissipations are nearly propor-

tional to cell-edge flow jumps in smooth regions.
The influences of inviscid fluxes on surface heating computations are investigated with
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a 5Sth-order weighted compact nonlinear scheme ( WCNS-E-5) and 2 low-order schemes
(2nd order and 1st order). The numerical results indicate that, compared with low-order
methods, the high-order method produces much lower cell-edge flow jumps, and then
much lower dissipations. Thus, the unfavorable influences of flux constructions on surface
heating are minor for high-order schemes, and can be effectively diminished through grid
refinement. Note the constructions of inviscid fluxes do have significant influences on
shock instability or shock anomalies ( such as carbuncle phenomena) as shown in some
references. In addition to diminishing the adverse influences of flux dissipations on surface
heating computations, the high-order numerical methods (if they do not blow up) may be
superior to the low-order ones in the aspect of producing reasonable grid-independent nu-
merical results on relatively coarse grids.

When the high-order method is used, based on the present study and the related stud-
ies in the previous literatures, we recommend selecting inviscid fluxes with high shock sta-

bilities, and selecting low-dissipation fluxes only on the premise of high shock stabilities.
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