复合型脆断的周向应力应变乘积判据*

林拜松

(中南矿冶学院,1983年9月9日收到)

摘 要

本文提出一个新的复合型脆断判据, 即周向应力应变乘积判据, 该判据与实验数据非常一致.

一、前言

最近,一些研究者 11 ~ 61 得到了几个用应力强度因子 K_1 和 K_1 表示的复合型脆断判据,而且,这些判据全都包含在作者提出的经验判据。

$$(K_{I}/K_{Io})^{m} + (K_{I}/K_{Io})^{n} = 1$$
 $(1 \le \frac{m}{n} \le 2)^{(0)}$

之中.

在综合研究应变能密度判据(**)、最大周向应力判据(**)和最大周向应变判据(**)的基础上,我们提出一个新的判据,即周向应力应变乘积判据。以中心 斜裂纹板单向拉 伸 为例,对于 $\mu=1/3$ 平面应力情形 或 $\mu=0.25$ 平面应变情形,最大周向应力应变乘积判据 取 形 式:

 $K_{I}/K_{Io}+(K_{I}/K_{Io})^{2}=1$. 这表明,本判据与实验数据非常一致。

二、周向应力应变乘积判据

图 1 所示 I-I 复合型裂纹尖端附近的应力分 量 σ_r , σ_θ 和 $\tau_{r\theta}$ 为:

图 1 平面极坐标中的应力分量

$$\sigma_{r} = \frac{1}{2\sqrt{2\pi r}} \left[K_{I}(3 - \cos\theta) \cos\frac{\theta}{2} + K_{I}(3\cos\theta - 1)\sin\frac{\theta}{2} \right]$$

$$\sigma_{\theta} = \frac{1}{2\sqrt{2\pi r}} \left[K_{I}(1 + \cos\theta)\cos\frac{\theta}{2} - K_{I}(3\sin\theta)\cos\frac{\theta}{2} \right]$$

$$\tau_{r\theta} = \frac{1}{2\sqrt{2\pi r}} \left[K_{I}\sin\theta\cos\frac{\theta}{2} + K_{I}(3\cos\theta - 1)\cos\frac{\theta}{2} \right]$$
(2.1)

而周向应力应变乘积为:

$$P = \sigma_{\theta} \cdot \varepsilon_{\theta} = \frac{1}{E} (\sigma_{\theta}^2 - \mu \sigma_{\theta} \sigma_{\theta})$$
 (2.2)

^{*} 钱伟长推荐。

其中E是弹性模量, μ 是泊松比。将式(2.1)的 σ_{ℓ} 和 σ_{ℓ} 代入式(2.2)得。

$$P = \frac{1}{r} (A_{11}K_{1}^{2} + 2A_{12}K_{1}K_{1} + A_{22}K_{1}^{2})$$
 (2.3)

其中诸系数 Au (i, j=1.2)给出为:

$$A_{11} = \frac{1}{16\pi G} \left[\cos^4 \left(\frac{\theta}{2} \right) (\kappa - 2 + \cos \theta) \right]$$

$$A_{12} = \frac{1}{16\pi G} \left[\frac{1}{2} \sin \theta \cos^2 \left(\frac{\theta}{2} \right) (3 - 2\kappa - 3 \cos \theta) \right]$$

$$A_{22} = \frac{1}{16\pi G} \left[\frac{3}{4} \sin^2 \theta (\kappa + 3 \cos \theta) \right]$$

$$(2.4)$$

这里、 $\kappa=3-4\mu$ (平面应变), $\kappa=(3-\mu)/(1+\mu)$ (平面应力), G 是剪切弹性模量。

由式(2.3)知道,周向应力应变乘积有 r^{-1} 阶奇异性,我们用 L_0 代 表周向应力应变乘积的奇异性强度,并称它为"周向应力应变乘积因子",即

$$L_{\theta} = A_{11}K_{1}^{2} + 2A_{12}K_{1}K_{1} + A_{22}K_{1}^{2}$$
 (2.5)

这个因子通过系数 A_{ij} 而与 θ 有关。

周向应力应变乘积判据叙述如下:

1) 裂纹在 L_{θ} 达到最大值的方向开始扩展。于是,确定开裂角 θ_{θ} 的公式是,

$$\frac{\partial L_{\theta}}{\partial \theta} = 0. \quad \frac{\partial^{2} L_{\theta}}{\partial \theta^{2}} < 0, \qquad \theta = \theta_{\bullet} \text{ id}$$
 (2.6)

2) 当周向应力应变乘积因子的最大值达到临界值 $L_{\theta cr}$ 时,裂纹就开始扩展。于是,裂纹开始扩展条件为。

$$L_{\theta m sx} = L_{\theta cr} \tag{2.7}$$

显然, $\mu=0$ 时,周向应力应变乘 积判据就是最大周向应力判据或最大周向应变判据。

三、开裂角

现在,我们来确定 [型裂纹、 [型裂纹和]- [复合型裂纹的开裂角。

1) I型裂纹

对于 [型裂纹, 我们有

$$L_{\theta} = A_{11}K_{1}^{2} \tag{3.1}$$

代入式(2.6), 得到开裂角为:

$$\theta_0 = 0 \tag{3.2}$$

于是, L, 的最大值为:

$$L_{\theta \max} = \frac{K_1^2}{8\pi G} (\kappa - 1) \tag{3.3}$$

2) II型裂纹

对于 【型裂纹, 我们有

$$L_{\theta} = A_{22} K_{\mathrm{I}}^{2} \tag{3.4}$$

将式(3.4)代入式(2.6), 得到确定开裂角 θ 的公式为:

$$-\theta_0 = \cos^{-1}\left[-\frac{\kappa}{9} + \sqrt{\left(\frac{\kappa}{9}\right)^2 + \frac{1}{3}}\right]$$
 (3.5)

而 L_{θ} 的最大值为:

$$L_{\theta \max} = A_{22}(\theta_0) K_1^2 \tag{3.6}$$

 $-\theta_0$ 的计算值列在表 1 中. 对于 μ =0.07 的石墨钐(\perp)和 μ =0.2 的石墨 7477, \blacksquare 型裂 纹的实验开裂角的平均值约为 67° $^{[3]}$,这表明本判据与实验结果非常一致•

-θ。 **之**值

泊松	比 μ	0	0.1	0.2	0.25	0.3	1 3	0.4
-θ ₀	平面应力	70.5°	69.25°	68.05°	67.5°	67°	66.65°	66°
	平面应变	70.5	69.1°	67.5°	66.65*	65.7°	65.1°	63.75°

3) 中心斜裂纹

对于中心斜裂纹单向拉伸情形,应力强度因子为:

$$K_1 = \sigma \sqrt{\pi a} \sin^2 \beta$$
, $K_1 = \sigma \sqrt{\pi a} \sin \beta \cos \beta$ (3.7)

式中 σ ——拉应力; a——裂纹半长; β ——裂纹角。

将式(3.7)代入式(2.6), 就得到确定开裂角 θ 。的公式为:

$$\left(\frac{\partial A_{11}}{\partial \theta}\right)_{\theta=\theta_0} + 2\left(\frac{\partial A_{12}}{\partial \theta}\right)_{\theta=\theta_0} \cdot \operatorname{ctg}\beta + \left(\frac{\partial A_{22}}{\partial \theta}\right)_{\theta=\theta_0} \cdot \operatorname{ctg}^2\beta = 0$$
 (3.8)

 $\mu=1/3$ 时不同裂纹角 β 所对应的开裂角 θ_0 的计算值列在表 2 中 · 同时 表 2 亦列出实验开裂角 · 从表 2 可以看出,开裂角的理论值与实验值之间的差是小的 •

$$-\theta_0$$
 与 β 之间的关系, $\mu=\frac{1}{3}$

β		30°	40°	50°	60°	70°	80°
平面应力(-θ₀)	实验值	62.4°	55.6°	51.6°	43.1°	30.7°	17.3°
一面22/1(00/	理论值	57.3*	52 .9 °	50.2°	43.5	32.7°	18.8°

显然, L_{θ} 的最大值为:

$$L_{\theta \max} = A_{11}(\theta_0) K_1^2 + 2A_{12}(\theta_0) K_1 K_1 + A_{22}(\theta_0) K_1^2$$
(3.9)

四、复合型脆断判据

下面确定 K_{I} 。和复合型脆断判据。

1) I型裂纹

根据式(2.7)和(3.3),我们得到 L_0 的临界值为。

$$L_{\theta cr} = \frac{1}{8\pi G} (\kappa - 1) K_{1\theta} \tag{4.1}$$

式中, $\kappa=3-4\mu$, K_{10} 是平面应变断裂韧性。

2) Ⅱ型裂纹

$$\frac{K_{10}^{2}}{16\pi G} \left[\frac{3}{4} \sin^{2}\theta_{0} (\kappa + 3\cos\theta_{0}) \right] = \frac{\kappa - 1}{8\pi G} \cdot K_{10}^{2}$$
 (4.2)

将表 1 的 μ 值和对应的开裂角 θ_0 值代入式(4.2), 就可以得到比值 K_{Ic}/K_{Ic} 表 3 列出

比值 K_{1o}/K_{1o} 的计算结果。

表 3

 $K_{1c}/K_{1c}-\mu$ 关系

泊松比卢		0	0.1	0.2	0.25	0.3	1/3	0.4
Kr	平面应力	0.866	0.821	0.774	0.748	0.722	0.705	0.667
Kio	平面应变	0.866	0.816	0.748	0.705	0.650	0.607	0.494

从表 3 可以看出。(1) K_{Io}/K_{Io} 值随 μ 的增大而减小,(2) 文献[10]预言的 $K_{Io}/K_{Io}=0.63$,接近本判据 $\mu=0.3$ 时平面应变的 $K_{Io}/K_{Io}=0.65$,(3) 文献[11]预言的 $K_{Io}/K_{Io}=0.724$,与本判据 $\mu=0.3$ 时平面应力的 $K_{Io}/K_{Io}=0.722$ 几乎 相等;(4) 文献[9]指出,有机玻璃平板的比值 K_{Io}/K_{Io} 的实验平均值 向 0.737 或 0.652 靠近,这表明本判据与实验数据非常一致。

3) 中心斜裂纹

对于中心斜裂纹单向拉伸情形,将式(3.9)和(4.1)代入式(2.7),就得到开裂条件。

$$A_{11}(\theta_0)K_1^2 + 2A_{12}(\theta_0)K_1K_1 + A_{22}(\theta_0)K_1^2 = \frac{\kappa - 1}{8\pi G}K_{10}$$
(4.3)

由该式可以算出开裂时 K_1/K_1 。和 K_1/K_1 。之值。对于 $\mu=\frac{1}{3}$ 的平面应力和 $\mu=0.25$ 的平面应变, K_1/K_1 。和 K_1/K_1 。的计算值列在表 4 中。

表 4

 $K_{\rm I}/K_{\rm Ic}$ 和 $K_{\rm I}/K_{\rm Ic}$ 之值

β	0°	30°	40°	50°	60°	70°	80°	80.
$-\theta_0$		57.3°	52.9°	50,2°	43.5°	32.7°	18.8°	0.
K_{1}/K_{1}	0	0.333	0.441	0.559	0.686	0.814	0.943	. 1 .
$K_{\rm II}/K_{\rm II}$	1	0.820	0.748	0.664	0.561	0.423	0.243	0

计算后得到

$$\frac{K_{\rm I}}{K_{\rm Io}} + \left(\frac{K_{\rm I}}{K_{\rm Io}}\right)^2 = 1 \tag{4.4}$$

这就是 Wu 的经验判据²¹和 Lee 等的理论判据¹⁴¹。所以,本判据与实验数据非常一致。

参考 文献

- [1] Shah, R. C., Fracture under combined mode in 4340 steel, Fracture analysis, ASTM STP, 560 (1974), 29.
- [2] Wu, E.M., Application of fracture mechanics to anisotropic plates, J. Appl. Meth., 34, 4 (1967), 967.
- [3] Awaji, H. and S. Sato, Combined mode fracture toughness measurement by the disk test, J. Engng. Materials and Technol., 100, 2 (1978), 175.
- [4] Lee, K. Y. and H. S. Advani, Fracture criteria and stress intensity factors including the effect of crack closure, Engng. Fracture Mech., 16, 2 (1982), 257.
- [5] 汪懋骅, 复合型断裂应变准则, 固体力学学报, 4(1982), 571.
- [6] 林拜松, 复合型脆断的应变能判据. 应用数学和力学, 5, 4 (1984).
- [7] Sih, G. C., Strain-energy-density factor applied to mixed mode crack problems, Int. Journ. of Fracture, 10, 3 (1974), 305.
- [8] Erdogan, F. and G. C. Sih, On the crack extension in plates under plane loading and transverse shear, J. of Basic Engag., 85D (1963), 519.
- [9] 樊蔚勋, 复合型脆断的周向应变因子判据, 应用数学和力学, 3, 2 (1982), 211-224.
- [10] Hussain, M. A., S. L. Pu and J. Underwood, Strain energy release rate for a crack under combined mode I and mode I. ASTM STP, 560 (1974), 2.
- [11] Wang Tzu-chiang, Fracture criteria for combined mode cracks, Fracture, 1977 ICF4, Waterloo, Canada, 4, 135.

The Circumferential Stress-Strain Product Criterion of Mixed Mode Brittle Fracture

Lin Bai-song

(Central-South Institute of Mining and Metallurgy, Changsha)

Abstract

This paper presents a new criterion of mixed mode brittle fracture, i. e. the circumferential stress-strain product criterion. This criterion is shown to be in good agreement with known experimental data.