三维 Navier-Stokes 方程加罚有限元的 共轭梯度法和分块迭代法*

李开泰 黄艾香 李 笃 刘之行

(西安交通大学, 1982年12月12日收到)

摘 要

本文对 Navier-Stokes 问题加罚变分形成有限元解给出了共轭梯度算法和分块 迭代 算法,由于共轭梯度算法中、求解单变量极小值问题得到简化、使得计算时间大为节约。本文还给出了计算实例。

一、引言

控制粘性不可压缩流体的 Navier-Stokes 方程的有限元描叙可分为五类: (1) 原始变量方法(或称为速度-压力方法); (2) 罚函数方法; (3) 流函数方法; (4) 流函数-涡度方法以及 (5) 最优控制方法。这些方法各有自己的优点和缺点。它们的主要区别在于,不可压缩条件以怎样的形式出现在公式中。

在罚函数方法中,不可压缩条件由于在原始的极小化泛函中附加一项正定的"罚泛函"而近似地得到满足。这个方法的优点是压力不出现在原始变分形式中,因而减少了每个元素的自由度数。它的计算简单,以及对高、低雷诺数流动有好的精度,显示出这个方法有竞争能力。而最优控制方法,由于引入了状态向量——它是一个 Stokes 问题的解——把问题转化为极小化"能量泛函"。不可压缩条件可以被处理为强加的,也可引入罚函数来消除。

本文对三维 Navier-Stokes 方程的混合边值问题,给出了加罚变分形式的共轭梯度法和分块迭代法。

$$-\nu\Delta\mathbf{u} + (\mathbf{u}\cdot\nabla)\mathbf{u} + \nabla p = \mathbf{f} \qquad \text{在 } \Omega \text{ 内}
\text{div } \mathbf{u} = 0 \qquad \text{在 } \Omega \text{ 内}
\mathbf{u}|_{\Gamma_1} = 0, \left(\nu\frac{\partial\mathbf{u}}{\partial n} - p\mathbf{n}\right)_{\Gamma_2} = \mathbf{g} \qquad \text{在 } \partial\Omega = \Gamma_1 \cup \Gamma_2 \perp$$
(1.1)

这里 Ω 是 $R^{\mathfrak{d}}$ 中具有Lipschitz连续边界的有界域。我们引入Sobolev空间 $X = (H^{\mathfrak{l}}(\Omega))^{\mathfrak{d}}$, $X_{\mathfrak{d}} = (H^{\mathfrak{l}}(\Omega))^{\mathfrak{d}}$, $V = \{\mathbf{u} \in X, \mathbf{u} | r_{\mathfrak{l}} = 0\}$ 而 $X_{\mathfrak{d}} \subset V \subset X$ 。此外,让 $V_{\mathfrak{d}} = \{\mathbf{u} | \mathbf{u} \in V, \text{ div } \mathbf{u} = 0\}$.

^{*} 钱伟长推荐.

再引进如下的双线性与三线性泛函:

$$a_{\mathbf{0}}(\mathbf{u},\mathbf{v}) = v(\nabla \mathbf{u}, \nabla \mathbf{v}), G(\mathbf{u},\mathbf{v}) = (\operatorname{div} \mathbf{u}, \operatorname{div} \mathbf{v}) \quad \forall \mathbf{u}, \mathbf{v} \in V$$

$$a_1(\mathbf{u}, \mathbf{v}, \mathbf{w}) = ((\mathbf{u} \cdot \nabla) \mathbf{v}, \mathbf{w}), (\mathbf{g}, \mathbf{f}) = \iiint_{\mathbf{g}} \sum_{i=1}^{3} f^i g^i dx \quad \forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V$$

$$a(\mathbf{u}, \mathbf{v}, \mathbf{w}) = a_1(\mathbf{u}, \mathbf{v}, \mathbf{w}) + a_1(\mathbf{v}, \mathbf{u}, \mathbf{w})$$

$$a_{\mathfrak{o}}(\mathbf{u},\mathbf{v}) = a_{\mathfrak{o}}(\mathbf{u},\mathbf{v}) + \frac{1}{\varepsilon} G(\mathbf{u},\mathbf{v})$$

$$\langle F, v \rangle = (f, v) + \langle g, v \rangle = \iiint_{\Omega} f \cdot v \, dx + \iint_{\Gamma_2} g \cdot v \, ds$$

则问题(1.1)的加罚变分形式可表为

$$\begin{cases} 求 \mathbf{u} \in V, 使得 \\ a_0(\mathbf{u}, \mathbf{v}) + a_1(\mathbf{u}, \mathbf{u}, \mathbf{v}) = \langle \mathbf{F}, \mathbf{v} \rangle & \forall \mathbf{v} \in V \end{cases}$$
 (1.2)

问题 (1.1) 的原始变分形式可表为

$$\begin{cases} 求 \mathbf{u} \in V_0, 使得 \\ a_0(\mathbf{u}, \mathbf{v}) + a_1(\mathbf{u}, \mathbf{u}, \mathbf{v}) = \langle \mathbf{F}, \mathbf{v} \rangle & \forall \mathbf{v} \in V_0 \end{cases}$$
 (1.3)

众所周知,三线性泛函 $a_1(\cdot,\cdot,\cdot)$ 在 $V \times V \times V$ 上是连续的 • 取 N 为 a_1 的范数:

$$N = \sup_{\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathcal{V}} \frac{|a_1(\mathbf{u}; \mathbf{v}, \mathbf{w})|}{|\mathbf{u}|_1 |\mathbf{v}|_1 |\mathbf{w}|_1}$$

$$|a_1(\mathbf{u}, \mathbf{v}, \mathbf{w})| \leq N |\mathbf{u}|_1 |\mathbf{v}|_1 |\mathbf{w}|_1 \qquad \forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V$$
 (1.4)

关于(1.3)的存在性问题的存在性定理,已有如下结果[13]:当

$$\frac{4N}{v^2} \| \mathbf{F} \|_{*} < 1 \qquad \mathbf{F} \in V'$$
 (1.5)

时,问题(1.3)有唯一的解 u 满足

$$|\mathbf{u}^*|_1 \leq 2 \|\mathbf{F}\|_* / \nu$$
 (1.6)

此外,由于 mes $\Gamma_2=0$ 问题 (1.3) 有解且满足

$$|\mathbf{u}^*|_1 \leqslant ||\mathbf{F}||_* / \nu \tag{1.7}$$

这里 $\|\cdot\|_*$ 表示 V 的对偶空间 V' 的范数。而且,在条件

$$\frac{N}{v^2} \|\mathbf{F}\|_{*} < 1 \qquad \mathbf{F} \in V' \tag{1.8}$$

下, (1.3)有唯一解, 它也满足条件(1.7)

类似地,我们有

定理 1. 设 Ω 是 R^n 中具有 Lipschitz 连续边界 $\partial \Omega = \Gamma_1 \cup \Gamma_2$ 的有界开域, 则在条件 (1.5) 下问题 (1.1) 在集合

$$K = \{ \mathbf{u} \mid \mathbf{u} \in V, |\mathbf{u}|_1 \leq 2 \|\mathbf{F}\|_* / \nu \}$$
 (1.9)

内存在唯一解.

证明: 我们考虑辅助问题

$$C(\mathbf{u}, \mathbf{w}, \mathbf{v}) \equiv a_{\varepsilon}(\mathbf{w}, \mathbf{u}) + a_{1}(\mathbf{u}, \mathbf{w}, \mathbf{v}) = \langle \mathbf{F}, \mathbf{v} \rangle \qquad \forall \mathbf{v} \in V$$
 (1.10)

显然。 $\forall u \in K$,有

(1) $C(\mathbf{u}_1, \cdot, \cdot)$ 是 $V \times V$ 上的连续双线性泛函

(2) $C(\mathbf{u},\cdot,\cdot)$ 是V-椭圆型的

$$C(\mathbf{u}, \mathbf{v}, \mathbf{v}) \geqslant \nu |\mathbf{v}|_{1}^{2}/2 \qquad \forall \mathbf{v} \in \mathcal{V}$$
 (1.11)

事实上, $\forall u \in K$.

$$C(\mathbf{u}, \mathbf{v}, \mathbf{v}) = a_{\varepsilon}(\mathbf{v}, \mathbf{v}) + a_{\varepsilon}(\mathbf{u}, \mathbf{v}, \mathbf{v}) \geqslant (\nu - N |\mathbf{u}|_{\varepsilon}) |\mathbf{v}|_{\varepsilon}^{2}$$

由于(1.9),则(1.11)显然可得。

根据 Lax-Milgram 定理 3,对任一 $u \in K$, (1.10)中的 w 存在唯一解,并且

$$|\mathbf{w}|_{1} \leq 2 ||\mathbf{F}||_{*} / \nu$$

于是 w $\in K$, 因而(1.10)定义了一个 $K \rightarrow K$ 的算子 P:

$$Pu = w$$

我们来证明 P 是一个压缩映射。取定 \mathbf{u}_1 , $\mathbf{u}_2 \in K$, $\mathbf{u}_1 \neq \mathbf{u}_2$, $\mathbf{w} = P\mathbf{u}_1$, $\mathbf{w}_2 = P\mathbf{u}_2$, 由 (1.10) 并且利用 a_1 的三线性性我们得到

$$a_{\varepsilon}(\mathbf{w}_{1}-\mathbf{w}_{2},\mathbf{v})+a_{1}(\mathbf{u}_{1};\mathbf{w}_{1}-\mathbf{w}_{2},\mathbf{v})=a_{1}(\mathbf{u}_{2}-\mathbf{u}_{1};\mathbf{w}_{2},\mathbf{v}) \qquad \forall \mathbf{v} \in V$$

取 $v=w_1-w_2$, 据 (1.11) 及 $u_1 \in K$, 就有

$$\begin{aligned} \nu | \mathbf{w}_{1} - \mathbf{w}_{2} |_{1}^{2} / 2 &\leq |a_{\varepsilon}(\mathbf{w}_{1} - \mathbf{w}_{2}, \mathbf{w}_{1} - \mathbf{w}_{2}) + a_{1}(\mathbf{u}_{1}, \mathbf{w}_{1} - \mathbf{w}_{2}, \mathbf{w}_{1} - \mathbf{w}_{2}) | \\ &= |a_{1}(\mathbf{u}_{2} - \mathbf{u}_{1}, \mathbf{w}_{2}, \mathbf{w}_{1} - \mathbf{w}_{2}) \leq N |\mathbf{u}_{2} - \mathbf{u}_{1}|_{1} |\mathbf{w}_{2}|_{1} |\mathbf{w}_{1} - \mathbf{w}_{2}|_{1} \end{aligned}$$

注意到 $\mathbf{w}_2 \in K$, 我们有

$$|\mathbf{w}_1 - \mathbf{w}_2| \leq 4N ||\mathbf{F}||_* ||\mathbf{u}_1 - \mathbf{u}_2| / \nu^2$$

依据(1.5),便知P是压缩映射。由于V是 Banach 空间且K是V的闭子集,我们肯定P在K中有一个不动点。证毕。

定理 2. 设 Ω 是 R^n (n<4)中具有Lipschitz连续边界 Γ 的有界开域,则存在正常数 α , β 使

$$v - c_1 \beta / 2 \geqslant \alpha > 0 \tag{1.12}$$

这里 c_1 是 Sobolev 嵌入常数.

$$\|\mathbf{u}\|_{0,4} \leqslant c_1 \|\mathbf{u}\|_{1} \quad \forall \mathbf{u} \in V$$

并且假定

$$N\|\mathbf{F}\|_{*}/a^{2} < 1$$
 (1.13)

则对充分小的, 使得

$$\sqrt{\frac{\varepsilon}{4\alpha}} \| \mathbf{F} \|_{*} \leqslant \beta \tag{1.14}$$

成立的罚参数 $\varepsilon > 0$, 在集合

$$K_1 = \{\mathbf{u} \mid \mathbf{u} \in V, \|\operatorname{div} \mathbf{u}\|_0 \leqslant \beta, \|\mathbf{u}\|_1 \leqslant \|\mathbf{F}\|_{*}/\alpha\}$$
(1.15)

中,(1.3)存在唯一的解。

证明: 首先, 不等式

$$|a_1(\mathbf{u}, \mathbf{v}, \mathbf{v})| \leq c_1 |\mathbf{v}|_1^2 ||\operatorname{div} \mathbf{u}||_0$$
 (1.16)

是成立的。事实上

$$a_1(\mathbf{u}, \mathbf{v}, \mathbf{w}) + a_1(\mathbf{u}, \mathbf{w}, \mathbf{v}) = \int_{\Omega} u^j \frac{\partial}{\partial x^j} (\mathbf{v}, \mathbf{w}) dx = -\int_{\Omega} (\mathbf{v}, \mathbf{w}) \operatorname{div} \mathbf{u} dx$$

因而,由(1.16)即得

$$|a_1(\mathbf{u}, \mathbf{v}, \mathbf{v})| \leq 0.5 \|\mathbf{v}\|_{0.4}^2 \|\text{div }\mathbf{u}\|_{0}$$

此时,问题(1.10)也定义了一个从 K_1 到 K_1 的算子 P_2 ,这是因为,由(1.12)就有

$$C(\mathbf{u}, \mathbf{v}, \mathbf{v}) = |\mathbf{v}|_{1}^{2} + \frac{1}{\varepsilon} \|\operatorname{div} \mathbf{v}\|_{0}^{2} + a_{1}(\mathbf{u}, \mathbf{v}, \mathbf{v})$$

$$\geqslant (\nu - c_1 \beta/2) |\mathbf{v}|_1^2 \geqslant \alpha |\mathbf{v}|_1^2 \qquad \forall \mathbf{v} \in V$$

此外,如果 $\mathbf{w} = P\mathbf{u}$, $\mathbf{u} \in K_1$,则(1.10)得出

$$\nu \|\mathbf{w}\|_{1}^{2} + \|\operatorname{div} \mathbf{w}\|_{0}^{2} / \varepsilon - c_{1} \|\mathbf{w}\|_{1}^{2} / 2 \cdot \|\operatorname{div} \mathbf{u}\|_{0} \leq \|\mathbf{F}\|_{2} \|\mathbf{w}\|_{1}$$
(1.17)

即是

$$\alpha |\mathbf{w}|_{1}^{2} + \|\operatorname{div} \mathbf{w}\|_{0}^{2} / \varepsilon \leq \|\mathbf{F}\|_{*} \|\mathbf{w}\|_{1}$$

利用 $ab \leqslant \sigma a^2 + b^2/4\sigma$ ($\sigma > 0$), 我们有

$$\|\operatorname{div} \mathbf{w}\|_{0}^{2}/\varepsilon + (\alpha - \sigma) \|\mathbf{w}\|_{1}^{2} \leq \|\mathbf{F}\|_{*}^{2}/4\sigma$$

 $\phi \sigma = \alpha$ 即得

$$\|\operatorname{div} \mathbf{w}\|_{0} \leqslant \|\mathbf{F}\|_{*} \sqrt{\frac{\varepsilon}{4\alpha}}$$
 (1.18)

将 (1.14) 代入 (1.18) 而得

$$\|\operatorname{div} \mathbf{w}\|_{0} \leq \beta$$

因而 $P: K_1 \rightarrow K_1$. P 的压缩性的证明与定理 1 类似。证毕。

设 (u_*,p_*) 是(1.2)的解,(u,p)是(1.3)的解,则下面的估计式成立^[13]。

$$\|\mathbf{u}-\mathbf{u}_s\|_1 + \|p-p_s\|_0 \leqslant c_2 \varepsilon$$

这里 c_2 是与(\mathbf{u}, p)和(\mathbf{u}_*, p_*)无关的常数。

二、最优控制方法与共轭梯度算法

引入泛函

$$J(\mathbf{v}) = a_{\varepsilon}(\mathbf{v} - \boldsymbol{\xi}, \mathbf{v} - \boldsymbol{\xi})/2 \tag{2.1}$$

其中 $\xi = \xi(v)$ 是下面变分问题的解:

$$\xi \in V, \ a_{\varepsilon}(\xi, \eta) = \langle \mathsf{F}, \eta \rangle - a_{\varepsilon}(\mathsf{v}, \mathsf{v}, \eta) \qquad \forall \eta \in V$$
 (2.2)

显然, ξ 通过(2.2)依赖于 v, 当 u 是(1.2)的解时, 由(2.2)及 $\xi(u) = u$, 故 J(u) = 0, 考察知下的极值问题

求
$$\mathbf{u} \in V$$
,使得 $J(\mathbf{u}) = \min_{\mathbf{v} \in V} J(\mathbf{v})$ (2.3)

显然,(2.2),(2.3)具有最优控制问题结构,其中v是控制变量, {是状态变量,(2.2)是状态方程,(2.1)是估值函数.

求解(2.2), (2.3)可用下述的共轭梯度算法:

(1) 取 u₀, g₀分别为下列问题的解

$$a_s(\mathbf{u}_0, \mathbf{w}) = \langle \mathbf{F}, \mathbf{w} \rangle \qquad \forall \mathbf{w} \in \mathcal{V}$$

 $a_s(\mathbf{g}_0, \mathbf{w}) = \langle J'(\mathbf{u}_0), \mathbf{w} \rangle \qquad \forall \mathbf{w} \in \mathcal{V}$

这里 $\langle J'(\mathbf{u}_{\mathfrak{o}}), \mathbf{w} \rangle$ 是泛函J在 $\mathbf{u}_{\mathfrak{o}}$ 处沿 \mathbf{w} 方向的Gateaux导数。

$$\langle J'(\mathbf{u}), \mathbf{w} \rangle = a_{\epsilon}(\mathbf{u} - \xi, \mathbf{w}) + a(\mathbf{u}, \mathbf{v}, \mathbf{u} - \xi) \qquad \forall \mathbf{u}, \mathbf{v} \in V$$

让 $\xi_0 = g_0$, $\forall n > 0$, 设 u_n , g_n , ξ_n 为已知, u_{n+1} , g_{n+1} , ξ_{n+1} 的计算可按如下步骤进行:

- (2) $\lambda_n = \arg\min_{\lambda \in R} \min J(\mathbf{u}_n \lambda \xi_n)$. $\mathbf{u}_{n+1} = \mathbf{u}_n \lambda_n \xi_n$
- (3) 由下面问题的解求 g_{n+1}:

$$a_{\varepsilon}(\mathbf{g}_{n+1}, \mathbf{w}) = \langle J'(\mathbf{u}_{n+1}), \mathbf{w} \rangle \qquad \forall \mathbf{w} \in V$$

$$v_{n+1} = a_{\varepsilon}(\mathbf{g}_{n+1}, \mathbf{g}_{n+1} - \mathbf{g}_n) / a_{\varepsilon}(\mathbf{g}_n, \mathbf{g}_n)$$

$$\xi_{n+1} = g_{n+1} + v_{n+1} \xi_n$$

n=n+1 重返(2), 直到收敛.

容易证明,对任一固定的 $v \in V$,

$$\langle \mathsf{F}, \mathsf{\eta} \rangle - a_1(\mathsf{v}, \mathsf{v}, \mathsf{\eta})$$

是V上的线性有界泛函,所以存在 $g(v) \in V'$ 使得

$$\langle \mathbf{g}(\mathbf{v}), \mathbf{\eta} \rangle = \langle \mathbf{F}, \mathbf{\eta} \rangle - a_1(\mathbf{v}, \mathbf{v}, \mathbf{\eta}) \qquad \forall \mathbf{\eta} \in V$$

那么, (2.2) 可以改为

$$\Re \xi \in V, \ a_{\epsilon}(\xi, \eta) = \langle g(\mathbf{v}), \eta \rangle \qquad \forall \eta \in V \tag{2.4}$$

因为 $a_{\bullet}(\cdot,\cdot)$ 是 $V \times V$ 上对称强制双线性泛函,由 Lax-Milgram 定理, $\forall v \in V$,(2.4) 存在唯一的解 ξ 日

$$\|\boldsymbol{\xi}\|_1 \leqslant \frac{1}{n} \|\mathbf{g}\|_{*} \tag{2.5}$$

由 (2.4) 确定一个 $V \rightarrow V$ 的映射: $\mathbf{v} \rightarrow \xi(\mathbf{v})$, 记

$$\xi(\mathbf{v}) = T\mathbf{v}$$

那么

$$a_{\varepsilon}(Tv, \eta) = \langle g(v), \eta \rangle \quad \forall \eta \in V$$

由(1.4)有

$$\|\mathbf{g}\|_{*} = \sup_{\eta \in V} \frac{|\langle \mathbf{F}, \eta \rangle - a_{1}(\mathbf{v}, \mathbf{v}, \eta)|}{|\eta|_{1}} \leq \|\mathbf{F}\|_{*} + N \|\mathbf{v}\|_{1}^{2}$$
 (2.6)

由 (2.5) 得

$$|T\mathbf{v}|_{1} \leqslant \frac{1}{2} (\|\mathbf{F}\|_{*} + N\|\mathbf{v}\|_{1}^{2}) \qquad \forall \mathbf{v} \in V$$
(2.7)

如果 $\mathbf{F} \in (L^{4/3}(\Omega))^n$, $\mathbf{v} \in V$, 则 $\mathbf{g}(\mathbf{v}) \in (L^{4/3}(\Omega))^n$, 并且

$$\|\mathbf{g}(\mathbf{v})\|_{0,4/3}, \mathbf{\omega} \leq \|\mathbf{F}\|_{0,4/3}, \mathbf{\omega} + c\|\mathbf{v}\|_{1,\mathbf{\omega}}^{2}$$
(2.8)

实际上,当 $\mathbf{v} \in V$, $\mathbf{n} \leq 4$ 时, $H^1(\Omega) \setminus L^4(\Omega)$

$$\left(\int_{\Omega} \left| w^{j} \frac{\partial v_{i}}{\partial x^{j}} \right|^{4/3} dx \right)^{3/4} \leqslant \| w^{j} \|_{0,4} \| v_{i,x} \|_{0,2} \leqslant c \| w^{j} \|_{1} \| v_{ix} \|_{0,2}$$

故

$$\|(\mathbf{w} \cdot \nabla)\mathbf{v}\|_{0,4/3}, \varrho \leqslant c \|\mathbf{v}\|_{1,\varrho} \|\mathbf{w}\|_{1,\varrho} \tag{2.9}$$

由椭圆边值问题正则性定理, $T\mathbf{v} \in (H^2, ^{4/3}(\Omega))$ "、目

$$||T\mathbf{v}||_{2,4/3}, \varrho \leqslant c ||\mathbf{g}||_{0,4/3}, \varrho \leqslant c (||\mathbf{F}||_{0,4/3}, \varrho + |\mathbf{v}||_{1}^{2}, \varrho)$$
(2.10)

即 $T: \mathbf{v} \mapsto T\mathbf{v} \neq V \rightarrow (H^2, 4/3(\Omega))^n$ 的映射.

引理1. 设 $\Omega \in R^n$ 是具有Lipschitz连续边界的有界开集, $n \leq 4$,那么T: $\mathbf{v} \mapsto T\mathbf{v} \not\in V \to V$ 的连续映射:

$$|T\mathbf{v}_{1}-T\mathbf{v}_{2}|_{1} \leq \frac{N}{\nu} (|\mathbf{v}_{1}|_{1}+|\mathbf{v}_{2}|_{1})|\mathbf{v}_{1}-\mathbf{v}_{2}|_{1} \quad \forall \mathbf{v}_{1},\mathbf{v}_{2} \in V$$
 (2.11)

当 $\mathbf{F} \in (L^{4/3}(\Omega))^n$ 时,也是 $V \to (H^{2,4/3}(\Omega))^n$ 的连续映射:

$$||T\mathbf{v}_{1}-T\mathbf{v}_{2}||_{2,4/3} \leq c(|\mathbf{v}_{1}|_{1}+|\mathbf{v}_{2}|_{1})||\mathbf{v}_{1}-\mathbf{v}_{2}|_{1} \quad \forall \mathbf{v}_{1},\mathbf{v}_{2} \in V$$
 (2.12)

证明: $a_{\bullet}(T\mathbf{v}_1 - T\mathbf{v}_2, \mathbf{\eta}) = a_1(\mathbf{v}_2, \mathbf{v}_2, \mathbf{\eta}) - a_1(\mathbf{v}_1, \mathbf{v}_1, \mathbf{\eta})$

$$=a_1(v_2-v_1,v_2,\eta)+a_1(v_1,v_2-v_1,\eta)$$

令 $\eta = T\mathbf{v}_1 - T\mathbf{v}_2$,并注意 $a_{\bullet}(\cdot, \cdot)$ 的正定性及 $a_1(\cdot, \cdot, \cdot)$ 的连续性,不难得到 (2.11),故 T 在V的任一点上是连续的,在V的任一有界集上为 Lipschitz 连续。又因

$$a_{\epsilon}(T\mathbf{v}_{1}-T\mathbf{v}_{2},\mathbf{\eta})=a_{1}(\mathbf{v}_{2}+\mathbf{v}_{1};\mathbf{v}_{2},\mathbf{\eta})+a_{1}(\mathbf{v}_{1};\mathbf{v}_{2}-\mathbf{v}_{1},\mathbf{\eta}) \qquad \forall \mathbf{\eta} \in V$$

由椭圆算子正则性定理,我们有

$$||T\mathbf{v}_{1}-T\mathbf{v}_{2}||_{2,\frac{4}{3}} \leq c \sup_{\eta \in (L^{4}(\Omega))^{n}} \frac{|a_{1}(\mathbf{v}_{2}-\mathbf{v}_{1};\mathbf{v}_{2},\eta)+a_{1}(\mathbf{v}_{1};\mathbf{v}_{2}-\mathbf{v}_{1},\eta)|}{||\eta||_{0,4}}$$

这里 $L^4(\Omega)$ 是 $L^{4/3}(\Omega)$ 的对偶空间,由 a_1 的连续性立即得到 (2.12)。证毕。

推论1. 算子 $T = V \rightarrow V$ 的列紧算子。

证明:对于V中任一有界集,根据 (2.12),T将V中的有界集映射为 (H^2 , $^{4/3}(\Omega)$)"中的有界集,由于 H^2 , $^{4/3}(\Omega) \setminus V$ 嵌入算子是列紧的,故T也是列紧的。证毕。

引理2. 算子T 在V 中是 Gateaux 可导的:

$$\forall \mathbf{u} \in V$$

$$a_{\iota}(T'(\mathsf{u})\,\mathsf{w}\,,\mathsf{v}) = -a_{1}(\mathsf{u}\,;\mathsf{w}\,,\mathsf{v}) - a_{1}(\mathsf{w}\,;\mathsf{u}\,,\mathsf{v}) \qquad \forall \mathsf{v}\,,\mathsf{w} \in V \tag{2.13}$$

且 $T'(\mathbf{u})$ 在V 中 Lipschitz 连续:

$$||T'(\mathbf{u}_1) - T'(\mathbf{u}_2)|| \leq 2N |\mathbf{u}_1 - \mathbf{u}_2|_1 / \nu \qquad \forall \mathbf{u}_1, \mathbf{u}_2 \in V \tag{2.14}$$

证明: (2.13) 容易得到验证, 为证明(2.14), 注意到

$$a_{s}((T'(\mathbf{u}_{1})-T'(\mathbf{u}_{2}))\mathbf{w},\mathbf{v})=a_{1}(\mathbf{u}_{2}-\mathbf{u}_{1};\mathbf{w},\mathbf{v})+a_{1}(\mathbf{w};\mathbf{u}_{2}-\mathbf{u}_{1},\mathbf{v})$$

因而,由Lax-Milgram 定理,有

$$\begin{split} \|T'(\mathbf{u}_1) - T'(\mathbf{u}_2)\| &= \sup_{\mathbf{w} \in V} \frac{\|[T'(\mathbf{u}_1) - T'(\mathbf{u}_2)]\mathbf{w}\|}{\|\mathbf{w}\|_1} \\ &\leqslant \frac{1}{\nu} \sup_{\substack{\mathbf{w} \in V \\ \mathbf{v} \in V}} \frac{\|a_1(\mathbf{u}_2 - \mathbf{u}_1; \mathbf{w}, \mathbf{v}) + a_1(\mathbf{w}; \mathbf{u}_2 - \mathbf{u}_1, \mathbf{v})\|}{\|\mathbf{w}\|_1 \|\mathbf{v}\|_1} \leqslant 2N \|\mathbf{u}_1 - \mathbf{u}_2\|_1 / \nu \end{split}$$

推论2. 设 $T(\mathbf{u}+t\mathbf{w})$ 是相应于 $\mathbf{u}+t\mathbf{w}$ 的状态向量,则

$$T(\mathbf{u}+t\mathbf{w}) = T(\mathbf{u}) + T'(\mathbf{u}) \mathbf{w}t + T'(\mathbf{w}) \mathbf{w}t^2/2$$
 (2.15)

证明:由

$$a_{s}(T(\mathbf{u}+t\mathbf{w})-T\mathbf{u},\mathbf{v})=-t(a_{1}(\mathbf{u},\mathbf{w},\mathbf{v})+a_{1}(\mathbf{w},\mathbf{u},\mathbf{v}))-t^{2}a_{1}(\mathbf{w},\mathbf{w},\mathbf{v})$$

即得 (2.15).

注记 1: 容易证明 $\xi = T(\mathbf{u}), \xi_1 = T'(\mathbf{u}) \mathbf{w}, \xi_2 = T'(\mathbf{w}) \mathbf{w}/2$ 分别是下列方程的解,

$$a_{s}(\xi, \eta) = \langle F, \eta \rangle - a_{1}(\mathbf{u}; \mathbf{u}, \eta)$$

$$a_{s}(\xi_{1}, \eta) = -a_{1}(\mathbf{u}; \mathbf{w}, \eta) - a_{1}(\mathbf{w}; \mathbf{u}, \eta) \qquad \forall \eta \in V$$

$$a_{s}(\xi_{2}, \eta) = -a_{1}(\mathbf{w}; \mathbf{w}, \eta)$$

$$(2.16)$$

于是(2.15)可改写为

$$T(\mathbf{u} + t\mathbf{w}) = \xi + \xi_1 t + \xi_2 t^2$$
 (2.17)

然而, 估值函数 $J(\mathbf{u})$ 也可改写成

$$J(\mathbf{u}) = \frac{1}{2} a_{\epsilon} (\mathbf{u} - T\mathbf{u}, \mathbf{u} - T\mathbf{u})$$

并且 $Tu=\xi$ 是相应于 u 的状态向量。J(u) 的 Gateaux 导数 Grad J(u) 可表示为

$$\langle \operatorname{Grad} J(\mathbf{u}), \mathbf{w} \rangle = a_{\epsilon}(\mathbf{w} - T'(\mathbf{u}) \mathbf{w}, T\mathbf{u} - \mathbf{u})$$

= $a_{\epsilon}(\mathbf{w}, T\mathbf{u} - \mathbf{u}) - a_{\epsilon}(\mathbf{u}, \mathbf{w}, T\mathbf{u} - \mathbf{u}) - a_{\epsilon}(\mathbf{w}, \mathbf{u}, T\mathbf{u} - \mathbf{u})$

根据(2.17), J(u+tw)是一个四阶多项式, 事实上

$$\begin{split} 2J(\mathbf{u} + t\mathbf{w}) &= a_{\epsilon}(\mathbf{u} + t\mathbf{w} - T(\mathbf{u} + t\mathbf{w}), \mathbf{u} + t\mathbf{w} - T(\mathbf{u} + t\mathbf{w})) \\ &= a_{\epsilon}[\mathbf{u} - \xi + t(\mathbf{w} - \xi_{1}) - t^{2}\xi_{2}, \mathbf{u} - \xi + (\mathbf{w} - \xi_{1})t - \xi_{c}t^{2}] \\ &= a_{\epsilon}(\mathbf{u} - \xi, \mathbf{u} - \xi) + 2a_{\epsilon}(\mathbf{u} - \xi, \mathbf{w} - \xi_{1})t + [-2a_{\epsilon}(\mathbf{u} - \xi, \xi_{2}) \\ &+ a_{\epsilon}(\mathbf{w} - \xi_{1}, \mathbf{w} - \xi_{1})]t^{2} - 2a_{\epsilon}(\mathbf{w} - \xi_{1}, \xi_{2})t^{3} + a_{\epsilon}(\xi_{2}, \xi_{2})t^{4} \end{split}$$

即是

$$J(\mathbf{u} + t\mathbf{w}) = 2f(t) = 2\{\alpha_0 + \alpha_1 t + \alpha_2 t^2 + \alpha_3 t^3 + \alpha_4 t^4\}$$
 (2.18)

这里

$$\begin{aligned} &\alpha_{0} = a_{s} \left(\mathbf{u} - T \mathbf{u}, \mathbf{u} - T \mathbf{u} \right) = a_{c} \left(\mathbf{u} - \xi, \mathbf{u} - \xi \right) \\ &\alpha_{1} = 2a_{s} \left(\mathbf{u} - T \mathbf{u}, \mathbf{w} - T'(\mathbf{u}) \, \mathbf{w} \right) = 2a_{s} \left(\mathbf{u} - \xi, \mathbf{w} - \xi_{1} \right) \\ &\alpha_{2} = a_{s} \left(\mathbf{w} - T'(\mathbf{u}) \, \mathbf{w}, \mathbf{w} - T'(\mathbf{u}) \, \mathbf{w} \right) - a_{s} \left(\mathbf{u} - T \mathbf{u}, T'(\mathbf{w}) \, \mathbf{w} \right) \\ &= a_{s} \left(\mathbf{w} - \xi_{1}, \mathbf{w} - \xi_{1} \right) - 2a_{s} \left(\mathbf{u} - \xi, \xi_{2} \right) \\ &\alpha_{3} = -a_{s} \left[\mathbf{w} - T'(\mathbf{u}) \, \mathbf{w}, T'(\mathbf{w}) \, \mathbf{w} \right] = -2a_{s} \left(\mathbf{w} - \xi_{1}, \xi_{2} \right) \\ &\alpha_{4} = \frac{1}{4} \, a_{s} \left(T'(\mathbf{u}) \, \mathbf{w}, T'(\mathbf{u}) \, \mathbf{w} \right) = a_{s} \left(\xi_{2}, \xi_{2} \right) \end{aligned}$$

定理3. $\forall u, w \in V$, 单变量的极小值问题

$$t^* = \arg\min_{t \in R} J(\mathbf{u} + t\mathbf{w})$$

的解总是存在,并且 t^* 就是多项式 $f'(t) = \frac{df}{dt}$ 的零点,f(t)由 (2.18) 定义。

证明: 1) 由于 $a_{\epsilon}(\cdot,\cdot)$ 的强制性, 当 $\xi_2 \neq 0$ 时, $a_4 = a_{\epsilon}(\xi_2, \xi_2) > 0$, 即 f(t) 为四次多项式, 无疑, 在有限区间上, f(t) 必能达其最小值。

2)
$$\leq \xi_2 = 0$$
 时, $\alpha_4 = 0$ $\leq \alpha_3 = 2a_e (\mathbf{w} - \xi_1, \xi_2) = 0$,

$$a_2 = a_{\varepsilon} (\mathbf{w} - \xi_1, \mathbf{w} - \xi_1) - 2a_{\varepsilon} (\mathbf{w} - \xi_2, \xi_2) = a_{\varepsilon} (\mathbf{w} - \xi_1, \mathbf{w} - \xi_1)$$

同样,由于 $\mathbf{w} - \mathbf{\xi}_1 \neq 0 \Rightarrow \alpha_2 > 0$, f(t)是二次多项式,在有限区间上亦必达其最小值。

3) 当
$$\xi_2 = 0$$
, w $-\xi_1 = 0 \Rightarrow \alpha_4 = \alpha_3 = \alpha_2 = 0$, 此时有

$$a_1 = 2a_k (\mathbf{u} - \xi_1 \mathbf{w} - \xi_1) = 0$$

故 $f(t) = a_0$, 当然, f(t) 也能达其最小值.

$$f'(t) = \sum_{i=0}^{3} \beta_i t^i, \quad \beta_0 = \frac{\alpha_1}{2}, \quad \beta_1 = \alpha_2, \quad \beta_2 = \frac{3\alpha_3}{2}, \quad \beta_3 = 2\alpha_4$$

根据 1),2)和 3),f'(t) 是一个奇次多项式,因而 f'(t) 至少存在一个零点,在这里 f(t) 达到它的最小值。证毕。

定理4. 设 Ω 是 R^n 中具有 c^2 类边界的有界区域, $n \leq 4$, $F \in (L^{4/3}(\Omega))^n$,则由(2.1) 所定义的泛函 J(u) 在 V 上弱下半连续,且在某点处达到它的下确界:

$$J(\mathbf{u}^*) = \inf_{\mathbf{u} \in V} J(\mathbf{u})$$

证明: 先证 $J(\mathbf{u})$ 的弱下半连续性。设 $\mathbf{u}_m \to \mathbf{u}$ (弱)在 V 中。由推论 1 存在 $\{\mathbf{u}_m\}$ 的子序列 $\{\mathbf{u}_{mn}\}$ 使

$$Tu_{mp} \rightarrow Tu$$
 (强) 在 V 中

由此。显然有 $z_{mp} = u_{mp} - T u_{mp} \rightarrow z = u - T u$,此外

$$a_s(z_m-z,z_m-z)\geqslant 0 \Rightarrow a_s(z_m,z_m)\geqslant 2a_s(z_m,z)-a_s(z,z)$$

因而

$$\lim_{m_{o}\to\infty}\inf J(\mathbf{u}_{mP})\geqslant J(\mathbf{u})$$

进而,我们可以得到

$$\lim_{m \to \infty} \inf J(\mathbf{u}_m) \geqslant J(\mathbf{u}) \tag{2.20}$$

否则,将存在 {um} 的子序列 {umo} 使

$$J(\mathbf{u}_{mp}) < J(\mathbf{u}) \qquad \forall mp \qquad (2.21)$$

此时,在V中也有 $\mathbf{u}_{mq} \rightarrow \mathbf{u}$. 当然,我们能够在V中抽出{ \mathbf{u}_{mq} }的子序列{ \mathbf{u}_{mr} }使 $T\mathbf{u}_{mr} \rightarrow T\mathbf{u}$,因而 $\mathbf{z}_{mr} \rightarrow \mathbf{z}$ 并且

$$\lim_{m_r \to \infty} J(\mathbf{u}_{mr}) \geqslant J(\mathbf{u})$$

这与(2.21)式相矛盾,从而,我们证实了结论(2.20),即是说,J在V上弱下半连续。

另方面,
$$J(\mathbf{u}) \geq 0$$
, $\forall \mathbf{u} \in V$,让 $a = \inf_{\mathbf{u} \in V} J(\mathbf{u})$,假定 $\{\mathbf{u}_m\}$ 是一个极小化序列

$$\lim_{m\to 0} J(\mathbf{u}_m) = a$$

由此

$$a_{\mathfrak{o}}(\mathsf{z}_m,\mathsf{z}_m) \leqslant M$$

因而 $|z_m|_1 \leq c$, 也就是说, $\{z_m\}$ 是一致有界的。而且,由方程 (2.2), 必然有

$$a_{\varepsilon}(\mathbf{u}_{m},\mathbf{v}) + a_{\varepsilon}(\mathbf{u}_{m},\mathbf{u}_{m},\mathbf{v}) = \langle \mathbf{F}, \mathbf{v} \rangle - a_{\varepsilon}(\mathbf{z}_{m},\mathbf{v}) \qquad \forall \mathbf{v} \in V \tag{2.22}$$

特别, 若在 (2.22) 中证 v=um, 我们有

$$(\nu - c_1 \|\operatorname{div} \mathbf{u}_m\|/2) \|\mathbf{u}_m\|_1 \leq \|\mathbf{F}\|_* + \nu \|\mathbf{z}_m\|_1 \tag{2.23}$$

据(1.15), 当 ε 足够小时将使

$$\|\operatorname{div} \mathbf{u}_m\|_0 < \beta, \ \nu - c_1 \beta/2 \geqslant \alpha > 0$$

(参见定理 2 的证明),由(2.23)我们确信 $\{u_m\}$ 是一致有界的,因而我们可以抽出一个 $\{u_m\}$ 的子序列 $\{u_{mp}\}$ 使 $u_{mp}\rightarrow u$ 在 V 中并且有

$$\lim_{m \to \infty} J(\mathbf{u}_{mP}) = \inf_{\mathbf{v} \in V} J(\mathbf{v}) = \alpha$$

由于 $J(\mathbf{u})$ 在V上弱下半连续,我们有 $\alpha \gg J(\mathbf{u})$,但由 α 的定义又有 $J(\mathbf{u}) \gg \alpha$,这说明 $J(\mathbf{u}) = \alpha$ 。证毕。

状态方程(2.2)表明变分问题(1.2)与算子方程

$$\mathbf{u} = T\mathbf{u}$$

是等价的。换句话说, \mathbf{u} 是(1.2)的解,当且仅当 \mathbf{u} 是算子 T 的不动点。此时

$$J(u) = a_s(u - Tu \cdot u - Tu)/2 = 0$$

特别地,我们对使

$$\lim_{m\to\infty} J(\mathbf{u}_m) = 0$$

成立的极小化序列 $\{u_m\}$ 感兴趣,这里有如下结果:

定理5. 设定理4的条件被满足,则使

$$\lim_{m \to \infty} J(\mathbf{u}_m) = 0 \tag{2.24}$$

成立的J的极小化序列 $\{u_m\}$ 强收敛到 $\{1.2\}$ 的解u

$$\mathbf{u}_m \to \mathbf{u}$$
 $\stackrel{\cdot}{\leftarrow} V$ $\stackrel{\cdot}{\leftarrow}$ (2.25)

证明: 在定理 4 的证明中, 我们说明过能够抽取一个序列 {ump} 使

$$u_{mr} \rightarrow u$$
, $J(u) = \inf_{\mathbf{v} \in V} J(\mathbf{v}) = 0$

据推论1. 存在一个 $\{u_{mp}\}$ 的子序列(仍表以 $\{u_{mp}\}$)使得

$$T\mathbf{u}_{mP} \rightarrow T\mathbf{u}_{0}$$
 (强) 在 V 中 (2.26)

另外, 若使 $z_m = u_m - Tu_m$, (2.24) 推出

$$\lim_{m \to \infty} a_{\varepsilon}(\mathbf{z}_m, \mathbf{z}_m) = 0 \tag{2.27}$$

即是 $z_m \rightarrow 0$ (强)

从(2.26), (2.27) 我们即可得到结论

$$\mathbf{u}_{mp} \rightarrow \mathbf{u}$$
 (强) 在 V 中 (2.28)

然而状态方程可以被改写为

$$a_{\epsilon}(\mathbf{u}_{mp},\mathbf{v}) + a_{\epsilon}(\mathbf{u}_{mp},\mathbf{u}_{mp},\mathbf{v}) = \langle \mathbf{F},\mathbf{v} \rangle - a_{\epsilon}(\mathbf{z}_{mp},\mathbf{v})$$

让mp→∞,我们得到

$$a_{\bullet}(\mathbf{u},\mathbf{v}) + a_{1}(\mathbf{u},\mathbf{u},\mathbf{v}) = \langle \mathbf{F},\mathbf{v} \rangle \qquad \forall \mathbf{v} \in V$$

从而u是(1.2)的一个解•现在我们来证明(2.25)。设其不真,则存在 $\{u_m\}$ 的一个子序列 $\{u_{mq}\}$ 使

$$|\mathbf{u}_{mq} - \mathbf{u}|_1 < \varepsilon \qquad \forall \varepsilon > 0$$
 (2.29)

但 $\{u_{mo}\}$ 也是(2.24)的J的极小化序列,依上述的讨论我们有

这里 $\{u_{mr}\}$ 是 $\{u_{mg}\}$ 的一个子序列,这与假设(2.29)矛盾,于是(2.25)成立。证毕。

在实践中定理 3 和定理 4 是很重要的。利用它们,共轭梯度法的计算效率和精度得到很大改进。其原因在于,求解极小值问题 $\lambda^* = \arg\min J(\mathbf{u} + \lambda \xi)$ 只须求一个三次方程的根,而如果用其他方法 (例如 Fibonacci 方法),则它只能通过逐步缩短区间来近似求解,迭代次数

由精度决定。如把区间缩短至 $\frac{1}{100}$,迭代次数 N 为 11, 缩至 $\frac{1}{1000}$, N=20,每迭代一次

需要计算一次 $J(\mathbf{u}_n - \lambda_n \mathbf{\xi}_n)$, 而为了计算 J, 必须计算一次估值函数 J, 计算一次三线性泛函 $a_i(\cdot,\cdot,\cdot)$,一次双线性泛函 $a_e(\cdot,\cdot)$ 及求解一个 Stokes 问题。我们知道。计算一次 a_i , 其乘法运算量是计算一次 a_e 的 10 倍, 也是解 Stokes 问题的 10 倍。 定理 3 和定理 4 使得极小值在 R^1 上。从表 1 可以看出,我们的方法其乘法运算量是其他方法的四分之一。

表 1

		$a_{\mathbf{i}}(\cdot;\cdot,\cdot)$	$a_{e}(\cdot,\cdot)$	解Stokes问题	区间	误 差	
Fib		12	12	12	[-1, 1]	10-2	
我们	λ,	3	0	2	$(-\infty, +\infty)$	10-16	
Ļ	··	3	1	1			
乘法次数/每次		6×10 ⁵	6×10 ⁴	6×104			

三、分 块 迭 代 法

我们考察如下的迭代格式:设un为已知, un+1是

$$a_{\varepsilon}(\mathbf{u}_{n+1},\mathbf{v}) = \langle \mathbf{F}, \mathbf{v} \rangle - a_{1}(\mathbf{u}_{n}; \mathbf{u}_{n}, \mathbf{v}) \qquad \forall \mathbf{v} \in V \tag{3.1}$$

的解

定理6. 假设
$$\frac{4N}{n^2} ||\mathbf{F}||_{*} < 1$$
 (3.2)

$$K = \{\mathbf{u} \mid \mathbf{u} \in V, \quad |\mathbf{u}| \leq 2 \|\mathbf{F}\|_* / \nu\} \tag{3.3}$$

则由 (3.1) 所定义的序列 {un} 收敛到 (1.2) 的真解 u*。

证明: 首先, 我们指出, 当 $u_n \in K$ 时, $u_{n+1} \in K$ 。实际上, 由Lax-Milgram定理我们有

$$|\mathbf{u}_{n+1}|_{1} \leqslant \frac{1}{\nu} \sup_{\mathbf{v} \in V} \frac{|\langle \mathbf{F}, \mathbf{v} \rangle - a_{1}(\mathbf{u}_{n}; \mathbf{u}_{n}, \mathbf{v})|}{|\mathbf{v}|_{1}} \leqslant \frac{1}{\nu} (||\mathbf{F}||_{*} + N |\mathbf{u}_{n}|_{1}^{2})$$

$$\leqslant \frac{1}{\nu} ||\mathbf{F}||_{*} \left(1 + \frac{4N}{\nu^{2}} ||\mathbf{F}||_{*} \right) \leqslant \frac{2}{\nu} ||\mathbf{F}||_{*}$$

其次,我们来说明 {un}是压缩的。事实上

$$a_{\varepsilon}(\mathbf{u}_{n+1}-\mathbf{u}_{n},\mathbf{v})=a_{1}(\mathbf{u}_{n-1}-\mathbf{u}_{n};\mathbf{u}_{n-1},\mathbf{v})+a_{1}(\mathbf{u}_{n};\mathbf{u}_{n-1}-\mathbf{u}_{n},\mathbf{v})$$

取 $v=u_{n+1}-u_n$, 上面的等式得

$$\nu \|\mathbf{u}_{n+1} - \mathbf{u}_n\|_1 \leqslant N \|\mathbf{u}_{n-1} - \mathbf{u}_n\|_1 (\|\mathbf{u}_{n-1}\|_1 + \|\mathbf{u}_n\|_1) \leqslant \frac{4N}{\nu} \|\mathbf{F}\|_{\#} \|\mathbf{u}_{n-1} - \mathbf{u}_n\|_1$$

据 (3.2), 我们得

$$|\mathbf{u}_{n+1} \! - \! \mathbf{u}_n|_1 \! \leqslant \! \frac{4N}{v^2} \|\mathbf{F}\|_{\mathbf{x}} |\mathbf{u}_n \! - \! \mathbf{u}_{n-1}|_1 \! < \! |\mathbf{u}_n \! - \! \mathbf{u}_{n-1}|$$

(1.2) 减去 (3.1) 得

$$|\mathbf{u}_n - \mathbf{u}^*|_1 \leq (2\alpha)^n |\mathbf{u}_0 - \mathbf{u}^*|_1$$
, $(0 < \alpha < 0.5)$ 证毕.

用有限元法将(1.2)离散化后,我们得到如下的代数方程组

$$\begin{bmatrix}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{bmatrix}
\begin{bmatrix}
U_{1} \\
U_{2} \\
U_{3}
\end{bmatrix} + \begin{bmatrix}
N_{11}(U) & N_{12}(U) & N_{13}(U) \\
N_{21}(U) & N_{22}(U) & N_{23}(U)
\end{bmatrix}
\begin{bmatrix}
U_{1} \\
U_{2} \\
U_{3}
\end{bmatrix} = \begin{bmatrix}
F_{1} \\
F_{2} \\
F_{3}
\end{bmatrix}$$
(3.4)

分块迭代法就是

$$A_{11}U_{1}^{(n+1/2)} = F_{1} - N_{11}^{(n)}U_{1}^{(n)} - (N_{12}^{(n)} + A_{12})U_{2}^{(n)} - (N_{13}^{(n)} + A_{13})U_{3}^{(n)}$$

$$A_{22}U_{2}^{(n+1/2)} = F_{2} - N_{22}^{(n)}U_{2}^{(n)} - (N_{21}^{(n)} + A_{21})U_{1}^{(n)} - (N_{23}^{(n)} + A_{23})U_{3}^{(n)}$$

$$A_{33}U_{3}^{(n+1/2)} = F_{3} - N_{33}^{(n)}U_{3}^{(n)} - (N_{31}^{(n)} + A_{31})U_{1}^{(n)} - (N_{32}^{(n)} + A_{32})U_{2}^{(n)}$$

$$U^{(n+1)} = U^{(n)} + \omega(U^{(n+1/2)} - U^{(n)})$$

$$(3.5)$$

这里 $N_3^{(n)} = N_4(U^{(n)})$,而 $U^T = (U_1^T, U_2^T, U_3^T)$ 是流体速度的节点向量。

显然,方程 (3.4) 的刚度矩阵为 $3NG \times 3NG$ 阶, 而 (3.5) 的刚度矩阵则是 $NG \times NG$ 阶,这里 NG 表节点总数。

分块迭代法的优点在于,它只须较少的存贮量并且节省计算时间。但是在高雷诺数条件

下收敛条件不能得到满足.

四、通用程序和数值试验

根据上述两种方法,研制了两个通用程序。有限元元素均采用20节点三维等参元。它可以用来计算水泵及管道内部的三维粘性流动,也可计算润滑理论方面的问题。

程序的特点是,自动生成元素节点的整体编码和局部编码对照表、每个节点的影响节点集、每两个节点的相互影响节点集等有限元元素信息,并且对三线性型的计算做了专门处理,

我们对管道内部的三维流动进行了数值试验。流动区域被分成54个元素,有节点376个。数值试验对低、高雷诺数及各种不同的罚参数进行(参阅图 1~4)。

迭代次数、精度及在 SIEMENS 7760 计算机上所用的时间(秒, CPU)等数据列于表 2, 其中 Re表雷诺数, ϵ 表罚参数,N表迭代次数。

	共 轭 梯 度 法				分 块 迭 代 法							
Re	1	1	10^3	164	104	1 0 4	1	1	10 ³	10 ³	104	104
ε	10-5	10-7	10-7	10-5	10-7	10 ⁻⁹	10-5	10-7	10-5	10-7	10-5	10-7
N	2	2	3	2	2	6	1	1	7	1	7	1
「(秒)	570	570	730	570	570	1450	280	280	419	280	419	280

表 2

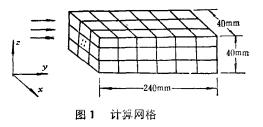
计算表明,共轭梯度算法具有下列良好性质:对速度和压力的计算精度高,收敛速度快,计算简单,能够解决大雷诺数问题而不需对Navier-Stokes 方程的非线性项采取任何专门措施。

罚参数 ε 的影响依赖于雷诺数, 在低雷诺数时可以用较大的 ε , 但在高雷诺数下必须用小的 ε 。

五、关于压力的超收敛性

为了考察上述方法对速度场和压力场的计算效果,应用我们的方法计算了一个有解析解的例子,其精确解 (\mathbf{u}^*, p^*) 和逼近解 (\mathbf{u}^*, p^*) 列于表 3~5.

如果直接依据公式 p_{\bullet} = $-\text{div }\mathbf{u}^{h}/e$ 或 (p_{\bullet},q) + $(\text{div }\mathbf{u}^{h},q)$ = 0, $\forall q \in M_h$ 来计算节点上的压力,并不能得到满意的结果,意外地,我们先计算高斯积分点上的压力,进而利用有限元外插法求出节点压力,得到了高精度的结果(见表 3, 4)。考察表 3、4、5,可以发现,压力的逼近精度优于速度的逼近精度。



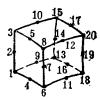


图 2 元 素

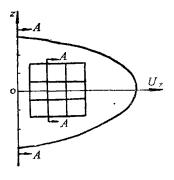


图 3 速度图

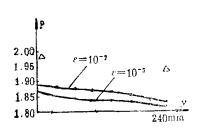


图 4 压力图

表 3

高斯积分点上的压力误差

	$Re=5.$ $\varepsilon=10^{-5}$	$Re = 1000, \varepsilon = 10^{-7}$,
1	1.9736	1.9736	1.998
2	1.9690	1.9690	1.994
3	1.9657	1.9655	1.990
4	1.9611	1.9610	1.984
5	1.9578	1.9576	1.983
6	1.9532	1.9531	1.974
7	1.9499	1.9497	1.974
8	1.9453	1.9452	1.970
9	1.9419	1.9418	1.966
10	1.9375	1.9376	1.962
11	1.9341	1.9341	1.958
12	1.9295	1.9294	1.953

表 4

节点上的压力误差

	计 算	值 p.	精 佈 党 か	
	$Re=5$, $s=10^{-5}$	$Re = 1000, \varepsilon = 10^{-7}$		
1	1.881	1.881	2.000	
2	1.872	1.872	1.992	
3	1.865	1.865	1.984	
4	1.857	1.857	1.976	
5	1.850	1.850	1.968	
6	1.842	1.842	1.960	
7	1.835	1.835	1.952	
8	2.180	2.180	2.000	
9	2.171	2.171	1.992	
10	2.162	2.162	1.984	
11	2.154	2.154	1.976	
12	2.145	2.145	1.968	
13	2.136	2.136	1.960	
14	2.128	2.129	1.95?	
	误差=0.0763	<u></u>		

表 5

节点上的速度误差

	计 銷	fii u,	精 € # u*	ill	差
	$Re=5$, $\varepsilon=10^{-5}$	$Re = 10^3$. $\varepsilon = 10^{-7}$		Re=5	Re=10 ³
1	0.500	Ø.567	0.506		
2	0.500	0.554	0.506		
3	0.499	0.540	0.596		: :
4	0.499	0.526	0.506		•
5	0.499	0.620	0.506		
6	0.499	0.616	0.506		
7	0.499	0.612	0.506	0.0463	0.1328
8	0.569	0.637	0.569	0.0100	0.1020
9	0.579	0.632	0.584		
10	0.590	0.628	0.599		
11	0.614	0.624	0.614		
12	0.630	0.620	0.630		
13	0.645	0.616	0.645		
14	0.660	0.612	0.660		I

参考文献

- [1] 李开泰、黄艾香、马逸华、李笃、刘之行, Navier-Stokes 问题加罚变分形式的最优控制有限元逼近, 西安交通大学学报, 16, 1(1982). 85—88.
- [2] 李笃, 三维 Navier-Stokes 问题的共轭梯度法及数值试验, 西安交通大学学报, 16, 4 (1982), 81-90.
- [3] 刘之行,三维 Navier-Stokes 问题加罚变分形式的分块迭代法及其应用程序,西安交通大学学报, 16,4(1982),91-102.
- [4] Bristeau, M. O., O. Pironneau, R. Glowinski, J. Periaux and P. Perrier, On the numerical solution of nonlinear problems in fluid dynamics by least squares and finite element methods (I): Least square formulation and conjugate gradient solution of the continuous problems, Comp. Math. Appl. Mech. Eng., 17/18(1979), 619—657.
- [5] Giraut, V. and P. A. Raviart, Finite Element Approximation for the Navier-Stokes Equations, Lecture Notes in Mathematics, Vol. 749, Springer-Verlag, Berlin (1980).
- [6] Teman, R., Navier-Stokes Equations, North-Holland, Amsterdam, (1977).
- [7] Reddy, J. N., On the mathematical theory of the penalty-finite elements for Navier-Stokes equations, Proceedings of the Third International Conference on Finite Elements in Flow Problems, Vol. 2(1980).
- [8] Zienkiewics, O. C., Constrained Variational Principles and Penalty Function Methods in Finite Element Analysis, Lecture Notes in Mathematics, (Edited by Dald and B. B. Eckmann), Springer-Verlag, New York (1974), 363.
- [9] Falk, R. S. and J. T. King, A penalty and extrapolation method for the stationary Stokes equations, SIAM, J. Numer. Anal., 13(1979), 814—829.
- [10] Bercoviex, M. and M. Engelman, A finite element for the numerical solution of viscous incompressible flows, J. Comp. Phys., 30(1979), 181-201.
- [11] Hughes, T. J. R., W. K. Liu and A. Brooks, Finite element analysis of incompressible viscous flows by the penalty function formulation, J. Comp. Phys., 30 (1979), 1-60.

- [12] Song, Y. J., J. T. Oden and N. Kikuchi, Discrete LBB-conditions for RIP-finite element methods, TICON Report. 80-7(1980).
- [13] Oden, J. T., RIP-Methods for Stokesian Flows, Finite Elements in Fluids, Vol.4, John Willey & Sons
- [14] Oden, J. T., Penalty methods and selective reduced intergration for Stokesian flow, Proceedings of the Third International Conference on Finite Elements in Flow Problems, Banff. Alberta, Canada, (1980), 140-145.
- [15] Oden, J.T., Penalty finite element methods for constrained problems in elasticity, Symposium on Finite Element Methods, Hefei, Anhui, China (1981).

The Conjugate Gradient Method and Block Iterative Method for Penalty Finite Element of Three-Dimensional Navier-Stokes Equations

Li Kai-tai Huang Ai-xiang Li Du Liu Zhi-xing
(Xian Jiaotong University, Xian)

Abstract

A conjugate gradient and block iterative algorithm for finite element solution of penalty variational form of Navier-Stokes equations are presented. Because the algorithm of solving single variable minimizing problem is simplified the computing time is greatly saved.

In this paper numerical examples are also provided.