1999, 20(3): 269-276.
摘要:
设X为实Banach空间,X*为其一致凸的共轭空间.设T:X→X为Lipschitzian强增生映象,L≥1为其Lipschitzian常数,k∈(0,1)为其强增生常数.设{αn},{βn}为[0,1]中的两个实数列满足:(ⅰ)αn→0(n→∞);(ⅱ)βn<L(1+L)/k(1-k)(n≥0);(ⅲ).假设为X中两序列满足:=o(βn)与μn→0(n→∞).任取x0∈X,则由(IS)1xn+1=(1-αn)xn+αnSyn+unyn=(1-βn)xn+βnSxn+μn(n≥0){所定义的迭代序列{xn强收敛于方程T