留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

局部FC-一致空间内凝聚映象的极大元和广义对策及应用(Ⅰ)

丁协平

丁协平. 局部FC-一致空间内凝聚映象的极大元和广义对策及应用(Ⅰ)[J]. 应用数学和力学, 2007, 28(12): 1392-1399.
引用本文: 丁协平. 局部FC-一致空间内凝聚映象的极大元和广义对策及应用(Ⅰ)[J]. 应用数学和力学, 2007, 28(12): 1392-1399.
DING Xie-ping. Maximal Elements and Generalized Games Involving Condensing Mappings in Locally FC-Uniform Spaces and Applications(Ⅰ)[J]. Applied Mathematics and Mechanics, 2007, 28(12): 1392-1399.
Citation: DING Xie-ping. Maximal Elements and Generalized Games Involving Condensing Mappings in Locally FC-Uniform Spaces and Applications(Ⅰ)[J]. Applied Mathematics and Mechanics, 2007, 28(12): 1392-1399.

局部FC-一致空间内凝聚映象的极大元和广义对策及应用(Ⅰ)

基金项目: 四川省教育厅重点科研基金资助项目(2003A081;SZD0406)
详细信息
    作者简介:

    丁协平(1938- ),男,自贡人,教授(Tel:+86-28-84780952;E-mail:xieping_ding@hotmail.com).

  • 中图分类号: O225;O189.11

Maximal Elements and Generalized Games Involving Condensing Mappings in Locally FC-Uniform Spaces and Applications(Ⅰ)

  • 摘要: 首先在没有凸性结构的局部FC-一致空间内引入了非紧性测度和凝聚集值映象概念.在局部FC-一致空间内对涉及凝聚集值映象的集值映象族证明了新的极大元存在性定理.作为应用,在局部FC-一致空间内对涉及凝聚集值映象的广义对策建立了某些新的平衡存在性定理.这些结果改进和推广了文献中的某些已知结果到局部FC-一致空间.对广义矢量拟平衡组的进一步应用,我们将在文(Ⅱ)中给出.
  • [1] Borglin A H.Keiding H. Existence of equilibrium actions and of equilibrium: A note on the “new” existence theorems[J].J Math Econom,1976,3(3): 313-316. doi: 10.1016/0304-4068(76)90016-1
    [2] Yannelis N C, Prabhakar N D. Existence of maximal elements and equilibria in linear topological spaces[J].J Math Econom,1983,12(2):233-245. doi: 10.1016/0304-4068(83)90041-1
    [3] Tulcea C I. On the equilibriums of generalized games[R]. The Center for Math Studies in Economics and Management Science, Paper No. 696,1986.
    [4] Toussaint S. On the existence of equilibria in economies with infinite commodities and without ordered preferences[J].J Econom Theory,1984,33(1):98-115. doi: 10.1016/0022-0531(84)90043-7
    [5] Tarafdar E. A fixed point theorem and equilibrium point of an abstract economy[J].J Math Econom,1991,20(2): 211-218. doi: 10.1016/0304-4068(91)90010-Q
    [6] Tarafdar E. Fixed point theorems in H-spaces and equilibrium points of abstract economies[J].J Austral Math Soc,Ser A,1992,53(1):252-260. doi: 10.1017/S1446788700035825
    [7] DING Xie-ping, Tan K K. On equilibria of noncompact generalized games[J].J Math Anal Appl,1993,177(1):226-238. doi: 10.1006/jmaa.1993.1254
    [8] DING Xie-ping, Kim W K, Tan K K. Equilibria of generalized games with L-majorized correspondences[J].Internat J Math Math Sci,1994,17(4): 783-790. doi: 10.1155/S0161171294001092
    [9] Tan K K, Zhang X L. Fixed point theorems on G-convex spaces and applications[J].Proc Nonlinear Funct Anal Appl,1996,1: 1-19.
    [10] DING Xie-ping. Fixed points, minimax inequalities and equilibria of noncompact generalized games[J].Taiwanese J Math,1998,2(1): 25-55.
    [11] DING Xie-ping.Maximal element principles on generalized convex spaces and their application[A]. In: R P Argawal, Ed. Set Valued Mappings With Applications in Nonlinear Analysis[C]. In: SIMMA, Vol.4,New York:Taylor & Francis,2002,149-174.
    [12] 丁协平.乘积G-凸空间内的GB-优化映象的极大元及其应用(Ⅰ)[J].应用数学和力学,2003,24(6):583-594.
    [13] 丁协平.乘积G-凸空间内的GB-优化映象的极大元及其应用(Ⅱ)[J].应用数学和力学,2003,24(9):899-905.
    [14] Deguire P, Tan K K, Yuan X Z. The study of maximal elements, fixed points for LS-majorized mappings and their applications to minimax and variational inequalities in product topological spaces[J].Nonlinear Anal,1999,37(7): 933-951. doi: 10.1016/S0362-546X(98)00084-4
    [15] Shen Z F. Maximal element theorems of H-majorized correspondence and existence of equilibrium for abstract economies[J].J Math Anal Appl,2001, 256(1): 67-79. doi: 10.1006/jmaa.2000.7285
    [16] DING Xie-ping, Yuan G X-Z. The study of existence of equilibria for generalized games without lower semicontinuity in locally convex topological vector spaces[J].J Math Anal Appl,1998,227(2): 420-438. doi: 10.1006/jmaa.1998.6105
    [17] DING Xie-ping, XIA Fu-quan. Equilibria of nonparacompact generalized games with LFc-majorized correspondence in G-convex spaces[J].Nonlinear Anal,2004,56(6): 831-849. doi: 10.1016/j.na.2003.10.015
    [18] DING Xie-ping, YAO Jen-chih, LIN Lai-Jiu. Solutions of system of generalized vector quasi-equilibrium problems in locally G-convex uniform spaces[J].J Math Anal Appl,2004, 298(2): 398-410. doi: 10.1016/j.jmaa.2004.05.039
    [19] DING Xie-ping, YAO Jen-chih. Maximal element theorems with applications to generalized games and systems of generalized vector quasi-equilibrium problems in G-convex spaces[J].J Optim Theory Appl,2005, 126(3): 571-588. doi: 10.1007/s10957-005-5498-0
    [20] DING Xie-ping. Maximal element theorems in product FC-spaces and generalized games[J].J Math Anal Appl,2005,305(1): 29-42. doi: 10.1016/j.jmaa.2004.10.060
    [21] 丁协平.乘积FC-空间内涉及—较好容许集值映象的优化映象的极大元及其应用[J].应用数学和力学,2006,27(12):1405-1418.
    [22] DING Xie-ping. Maximal elements of GKKM-majorized mappings in product FC-spaces and applications (Ⅰ)[J].Nonlinear Anal,2007,67(2):3411-3423. doi: 10.1016/j.na.2006.10.025
    [23] DING Xie-ping. The generalized game and the system of generalized vector quasi-equilibrium problems in locally FC-uniform spaces[J].Nonlinear Anal,DOI: 10.1016/j.na.2006.12.003.
    [24] Chebbi S, Florenzano M. Maximal elements and equilibria for condensing correspondences[J].J Math Anal Appl,1999, 38(3): 995-1002.
    [25] LIN Lai-jiu, Ansari Q H. Collective fixed points and maximal elements with applications to abstract economies[J].J Math Anal Appl,2004,296(2): 455-472. doi: 10.1016/j.jmaa.2004.03.067
    [26] Ben-El-Mechaiekh H, Chebbi S, Flornzano M,et al.Abstract convexity and fixed points[J].J Math Anal Appl,1998,222(1):138-150. doi: 10.1006/jmaa.1998.5918
    [27] Kim W K, Tan K K. New existence theorems of equilibria and applications[J].Nonlinear Anal,2001,47(1): 531-542. doi: 10.1016/S0362-546X(01)00198-5
    [28] Kelley J L.General Topology[M].New York:Springer-Verlag,1955.
  • 加载中
计量
  • 文章访问数:  2872
  • HTML全文浏览量:  208
  • PDF下载量:  745
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-03-21
  • 修回日期:  2007-10-27
  • 刊出日期:  2007-12-15

目录

    /

    返回文章
    返回