留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维弹性平面问题中任意边界条件下应力分布的封闭解

梁以德 郑建军

梁以德, 郑建军. 二维弹性平面问题中任意边界条件下应力分布的封闭解[J]. 应用数学和力学, 2007, 28(12): 1455-1467.
引用本文: 梁以德, 郑建军. 二维弹性平面问题中任意边界条件下应力分布的封闭解[J]. 应用数学和力学, 2007, 28(12): 1455-1467.
A. Y. T. Leung, ZHENG Jian-jun. Closed Form Stress Distribution in 2D Elasticity for all Boundary Conditions[J]. Applied Mathematics and Mechanics, 2007, 28(12): 1455-1467.
Citation: A. Y. T. Leung, ZHENG Jian-jun. Closed Form Stress Distribution in 2D Elasticity for all Boundary Conditions[J]. Applied Mathematics and Mechanics, 2007, 28(12): 1455-1467.

二维弹性平面问题中任意边界条件下应力分布的封闭解

基金项目: 香港研究基金委员会(#CERG1157/06)资助项目
详细信息
    作者简介:

    梁以德,教授(联系人.E-mail:andew.leung@cityu.edu.hk).

  • 中图分类号: O343.1;O11

Closed Form Stress Distribution in 2D Elasticity for all Boundary Conditions

  • 摘要: 应用辛方法研究了正交各向异性二维平面(x,z)弹性问题,在任意边界和不考虑梁假设条件下的解析应力分布解.辛方法通过将位移和应力作为对偶量推导得到一组辛的偏微分方程组,并且应用变量分离法对方程组进行了求解.同动力学中的问题比较,将弹性问题中的x轴模拟成时间轴,这样z轴成为唯一一个独立的坐标轴.问题中的Hamilton矩阵的指数展开具有辛的特征.在齐次问题求解中,通过边界条件和边界上的积分求得级数中的未知数.齐次解中包括减阶的零特征值的特征向量(零本征向量)和完好的非零本征值的特征向量(非零本征向量).零本征值的Jordan链给出了经典的Saint Venant解,反映了平均的整体行为像刚体位移、刚体旋转和弯曲等.另外,非零本征向量反映的是指数衰减的局部解,它们通常在Saint Venant原理下被忽略.文中给出了完整的算例,并且和已有结果进行了对比.
  • [1] Williams M L. Stress singularities resulting from various boundary conditions in angular corners of plates in extension[J].ASME Journal of Applied Mechanics,1952,19(4):526-528.
    [2] Timoshenko S P,Goodier J N.Theory of Elasticity[M].New York:McGraw-Hill,1970.
    [3] Gregory R D. The traction boundary-value problem for the elastostatic semi-infinite strip-existence of solution, and completeness of the Papkovich-Fadle eigenfunctions[J].Journal of Elasticity,1980,10(3):295-327. doi: 10.1007/BF00127452
    [4] Gregory R D, Gladwell I. The cantilever beam under tension, bending or flexure at infinity[J].Journal of Elasticity,1982,12(4):317-343. doi: 10.1007/BF00042208
    [5] Gregory R D, Wan F Y M.Decaying states of plane strain in a semi-infinite strip and boundary conditions for plate theory[J].Journal of Elasticity,1984,14(1):27-64. doi: 10.1007/BF00041081
    [6] Horgan C O, Simmonds J G.Asymptotic analysis of an end-loaded, transversely isotropic, elastic, semi-infinite strip weak in shear[J].International Journal of Solids and Structures,1991,27(15):1895-1914. doi: 10.1016/0020-7683(91)90184-H
    [7] Choi I, Horgan C O. Saint-Venants principle and end effects in anisotropic elasticity[J].ASME Journal of Applied Mechanics,1977,44(3):424-430. doi: 10.1115/1.3424095
    [8] Lin Y H, Wan F Y M.Bending and flexure of semi-infinite cantilevered orthotropic strips[J].Computers & Structures,1990,35(4):349-359.
    [9] Lin Y H, Wan F Y M. Semi-infinite orthotropic cantilevered strips and the foundations of plate theories[J].Studies in Applied Mathematics,1990,82(3):217-244.
    [10] Savoia M, Tullini N.Beam theory for strongly orthotropic materials[J].International Journal of Solids and Structures,1996,33(17):2459-2484. doi: 10.1016/0020-7683(95)00163-8
    [11] Leung A Y T, Su R K L. Mode-I crack problems by fractal 2-level finite-element methods[J].Engineering Fracture Mechanics,1994,48(6):847-856. doi: 10.1016/0013-7944(94)90191-0
    [12] Leung A Y T, Su R K L. Order of the singular stress fields of through-thickness cracks[J].International Journal of Fracture,1996,75(1):85-93. doi: 10.1007/BF00018527
    [13] Levinson M. A new rectangular beam theory[J].Journal of Sound and Vibration,1981,74(1):81-87. doi: 10.1016/0022-460X(81)90493-4
    [14] Heyliger P R, Reddy J N. A higher order beam finite element for bending and vibration problems[J].Journal of Sound and Vibration,1988,126(2):309-326. doi: 10.1016/0022-460X(88)90244-1
    [15] Leung A Y T. An improved 3rd-order beam theory[J].Journal of Sound and Vibration,1990,142(3):527-528. doi: 10.1016/0022-460X(90)90666-N
    [16] Spence D A. A class of biharmonic end-strip problems arising in elasticity and Stokes flow[J].IMA Journal of Applied Mathematics,1983,30(2):107-139. doi: 10.1093/imamat/30.2.107
    [17] 姚伟岸,钟万勰.辛弹性力学[M].北京:高等教育出版社,2002.
    [19] Tullini N, Savoia M. Logarithmic stress singularities at clamped-free corners of a cantilever orthotropic beam under flexure[J].Composite Structures,1995,32(1/4):659-666. doi: 10.1016/0263-8223(95)00062-3
    [20] Leung A Y T, Xu X S, Gu Q,et al.The boundary layer phenomena in two-dimensional transversely isotropic piezoelectric media by exact symplectic expansion[J].International Journal for Numerical Methods in Engineering,2007,69(11):2381-2408. doi: 10.1002/nme.1855
    [22] Zhong W X, Lin J H, Zhu J P. Computation of gyroscopic systems and symplectic eigensolutions of skew-symmetrical matrices[J].Computers & Structures,1994,52(5):999-1009.
    [23] Zhong W X, Williams F W. Physical interpretation of the symplectic orthogonality of the eigensolutions of a Hamiltonian or symplectic matrix[J].Computers & Structures,1993,49(4):749-750.
    [24] Zhong W X, Williams F W. On the direct solution of wave-propagation for repetitive structures[J].Journal of Sounds and Vibrations,1995,181(3):485-501. doi: 10.1006/jsvi.1995.0153
    [25] Xu X S, Zhong W X, Zhang H W. The Saint-Venant problem and principle in elasticity[J].International Journal of Solids and Structures,1997,34(22):2815-2827. doi: 10.1016/S0020-7683(96)00198-9
    [26] Zhang H W, Zhong W X, Li Y P. Stress singularity analysis at crack tip on bi-material interfaces based on Hamiltonian principle[J].Acta Mechanica Solida Sinica,1996,9(2):124-138.
  • 加载中
计量
  • 文章访问数:  2979
  • HTML全文浏览量:  113
  • PDF下载量:  600
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-01-30
  • 修回日期:  2007-11-08
  • 刊出日期:  2007-12-15

目录

    /

    返回文章
    返回