Model for Dependent Default With Hyperbolic Attenuation Effect and the Valuation of CDS
-
摘要: 引进一个双曲类型的衰减函数来表示一方违约对另一方违约强度的影响.若交易双方为竞争对手(合作公司),当一方的违约时,另一方的违约强度将减小(增大).随着时间的推移,这种影响将逐渐减小,直至为零.在这个模型下,通过测度变换,可以得到两公司违约时间的联合分布及各自的边际分布,从而可以对违约互换进行定价.Abstract: A hyperbolic attenuation function was introduced to reflect the effect of one firm's default to its partner. If the two firms are competitors (copartners), the default intensity of one firm will decrease (increase) abruptly when the other firm defaults. As time goes on, the impact will decrease gradually until extinction. In this model, the joint distribution and marginal distributions of default times are derived by employing the change of measure, so the fair swap premium of a CDS can be valued.
-
[1] Jarrow R A, Yu F. Counterparty risk and the pricing of defaultable securities[J].Journal of Finance,2001,56(5):1765-1799. doi: 10.1111/0022-1082.00389 [2] Li D X. On default correlation: A copula function approach[J].Journal of Fixed Income,2000,9(Mar):43-54. doi: 10.3905/jfi.2000.319253 [3] Schonbucher P, Schubert D.Copula-Dependent Default Risk in Intensity Models[Z]. Working paper:Bonn University,2001. [4] Laurent J-P,Gregory J.Basket default swaps, CDO's and factor copulas[J].The Journal of Risk,2005,7(4):103-122. [5] Duffie D,Singleton K.Modeling term structures of defaultable bonds[J].Review of Financial Studies,1999,12(4):687-720. doi: 10.1093/rfs/12.4.687 [6] Lando D. On cox processes and credit risky securities[J].Review of Derivatives Research,1998,[STHZ]. 2[STBZ]. (2):99-120. [7] Davis M,Lo V.Infectious defaults[J].Quantitive Finance,2001,1(4):383-387. [8] Leung S Y,Kwok Y K. Credit default swap valuation with counterparty risk[J].Kyoto Economic Review,2005,74(1):25-45. [9] Collin-Dufresne P, Goldstein R S,Hugonnier J.A general formula for valuing defaultable securities[J].Econometrica,2004,72(5):1377-1407. doi: 10.1111/j.1468-0262.2004.00538.x [10] Harrison M, Pliska S. Martingales and stochastic integrals in the theorey of continuous trading[J].Stochastics Processes and Their Applications,1981,11:215-260. doi: 10.1016/0304-4149(81)90026-0 [11] Shreve S E. Stochastic Calculus for Finance Ⅰ:The Binomial Asset Pricing Model[M].New York:Springer,2004.
计量
- 文章访问数: 2374
- HTML全文浏览量: 75
- PDF下载量: 851
- 被引次数: 0