留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类新的污染环境下具有时滞增长反应及脉冲输入的Monod恒化器模型的定性分析

孟新柱 赵秋兰 陈兰荪

孟新柱, 赵秋兰, 陈兰荪. 一类新的污染环境下具有时滞增长反应及脉冲输入的Monod恒化器模型的定性分析[J]. 应用数学和力学, 2008, 29(1): 69-80.
引用本文: 孟新柱, 赵秋兰, 陈兰荪. 一类新的污染环境下具有时滞增长反应及脉冲输入的Monod恒化器模型的定性分析[J]. 应用数学和力学, 2008, 29(1): 69-80.
MENG Xin-zhu, ZHAO Qiu-lan, CHEN Lan-sun. Global Qualitative Analysis of a New Monod Type Chemostat Model With Delayed Growth Response and Pulsed Input in a Polluted Environment[J]. Applied Mathematics and Mechanics, 2008, 29(1): 69-80.
Citation: MENG Xin-zhu, ZHAO Qiu-lan, CHEN Lan-sun. Global Qualitative Analysis of a New Monod Type Chemostat Model With Delayed Growth Response and Pulsed Input in a Polluted Environment[J]. Applied Mathematics and Mechanics, 2008, 29(1): 69-80.

一类新的污染环境下具有时滞增长反应及脉冲输入的Monod恒化器模型的定性分析

基金项目: 国家自然科学基金资助项目(10471117;10771179)
详细信息
    作者简介:

    孟新柱(1972- ),男,山东定陶人,副教授,博士(联系人.Tel:+86-532-86057931;E-mail:mxz721106@sdust.edu.cn).

  • 中图分类号: O175

Global Qualitative Analysis of a New Monod Type Chemostat Model With Delayed Growth Response and Pulsed Input in a Polluted Environment

  • 摘要: 考虑了一类新的污染环境下具有时滞增长反应及脉冲输入的Monod恒化器模型.运用离散动力系统的频闪映射,获得了一个‘微生物灭绝’周期解,进一步获得了该周期解全局吸引的充分条件.运用脉冲时滞泛函微分方程新的计算技巧,证明了系统在适当的条件下是持久的,结论还表明该时滞是“有害”时滞.
  • [1] Hsu S B.A competition model for a seasonally fluctuating nutrient[J].Journal of Mathematical Biology,1980,9(2):115-132. doi: 10.1007/BF00275917
    [2] Smith H L.Competitive coexistence in an oscillating chemostat[J].SIAM Journal on Applied Mathematics,1981,40(3):498-522. doi: 10.1137/0140042
    [3] Butler G J, Hsu S B,Waltman P.A mathematical model of the chemostat with periodic washout rate[J].SIAM Journal on Applied Mathematics,1985,45(3):435-449. doi: 10.1137/0145025
    [4] Pilyugin S S, Waltman P.Competition in the unstirred chemostat with periodic input and washout[J].SIAM Journal on Applied Mathematics,1999,59(4):1157-1177. doi: 10.1137/S0036139997323954
    [5] Simth H L,Waltman P.The Theory of the Chemostat[M].Cambridge: Cambridge University Press,1995.
    [6] Hsu S B,Hubbell S P,Waltman P.A mathematical theory for single nutrient competition in continuous cultures of micro-organisms[J].SIAM Journal on Applied Mathematics,1977,32(2):366-382. doi: 10.1137/0132030
    [7] Picket A M.Growth in a changing environment[A].In:Bazin M J,Ed.Microbial Population Dynamics[C].Florida:CRC Press,1982.
    [8] Monod J.La technique de culture continue; théorie et applications[J].Ann Inst Pasteur,1950,79(19):390-401.
    [9] Hansen S R,Hubbell S P.Single-nutrient microbial competition: qualitative agreement between experimental and theoretically forecast outcomes[J].Science,1980,207(4438):1491-1493. doi: 10.1126/science.6767274
    [10] Barford J P,Pamment N B,Hall R J.Lag phases and transients[A].In:Bazin M J,Ed.Microbial Population Dynamics[C].Florida:CRC Press, 1982.
    [11] Ramkrishna D,Fredrickson A G, Tsuchiya H M. Dynamics of microbial propagation: models considering inhibitors and variable cell composition[J].Biotechnology and Bioengineering,1967,9(2):129-170. doi: 10.1002/bit.260090203
    [12] Bush A W,Cook A E. The effect of time delay and growth rate inhibition in the bacterial treatment of wastewater[J].Journal of Theoretical Biology,1976,63(2):385-395. doi: 10.1016/0022-5193(76)90041-2
    [13] Caperon J.Time lag in population growth response of isochrysis galbana to a variable nitrate environment[J].Ecology,1969,50(2):188-192. doi: 10.2307/1934845
    [14] Freedman H I,So J W-H,Waltman P.Coexistence in a model of competition in the chemostat incorporating discrete delays[J].SIAM Journal on Applied Mathematics,1989,49(3):859-870. doi: 10.1137/0149050
    [15] Freedman H I,So J W-H, Waltman P.Chemostat competition with time delays[A].In:Eisenfeld J,Levine D S,Eds.Biomedical Modelling and Simulation[C].New York:Scientific Publishing Co. 1989.
    [16] RUAN Shi-gui,Wolkowicz Gail S K.Bifurcation analysis of a chemostat model with a distributed delay[J].Journal of Mathematical Analysis and Applications,1996,204(3):786-812. doi: 10.1006/jmaa.1996.0468
    [17] Thingstad T F,Langeland T I.Dynamics of chemostat culture: the effect of a delay in cell response[J].Journal of Theoretical Biology,1974,48(1):149-159. doi: 10.1016/0022-5193(74)90186-6
    [18] Ellermeyer S F.Competition in the chemostat: global asymptotic behavior of a model with delayed response in growth[J].SIAM Journal on Applied Mathematics,1994,54(2):456-465. doi: 10.1137/S003613999222522X
    [19] Wolkowicz Gail S K,XIA H.Global asymptotic behavior of a chemostat model with discrete delays[J].SIAM Journal on Applied Mathematics,1997,57(4):1019-1043. doi: 10.1137/S0036139995287314
    [20] Wolkowicz Gail S K, XIA Hua-xing,RUAN Shi-gui.Competition in the chemostat: A distributed delay model and its global asymptotic behavior[J].SIAM Journal on Applied Mathematics,1997,57(5):1281-1310. doi: 10.1137/S0036139995289842
    [21] XIA Hua-xing,Wolkowicz Gail S K,WANG Lin.Transient oscillations induced by delayed growth response in the chemostat[J].Journal of Mathematical Biology,2005,50(5):489-530. doi: 10.1007/s00285-004-0311-5
    [22] ZHAO Tao.Global periodic solutions for a differential delay system modelling a microbial population in the chemostat[J].Journal of Mathematical Analysis and Applications,1995,193(1):329-352. doi: 10.1006/jmaa.1995.1239
    [23] MacDonald N. Time delays in chemostat models[A].In:Bazin M J,Ed.Microbial Population Dynamics[C].Florida:CRC Press,1982.
    [24] Hale J KM,Somolinas A S.Competition for fluctuating nutrient[J].Journal of Mathematical Biology,1983,18(3):255-280. doi: 10.1007/BF00276091
    [25] Buler G J, Hsu S B,Waltman P. A mathematical model of the chemostat with periodic washout rate[J].SIAM Journal on Applied Mathematics,1985,45(3):435-449. doi: 10.1137/0145025
    [26] Wolkowicz Gail S K,ZHAO Xiao-qiang.N-spicies competition in a periodic chemostat[J].Differential and Integral Equations: An International Journal for Theory and Applications,1998,11(3):465-491.
    [27] Funasaki E,Kot M. Invasion and chaos in a periodically pulsed mass-action chemostat[J].Theoretical Population Biology,1993,44(2):203-224. doi: 10.1006/tpbi.1993.1026
    [28] Smith R J, Wolkowicz Gail S K. Analysis of a model of the nutrient driven self-cycling fermentation process[J].Dynamics of Continuous, Discrete and Impulsive Systems,Series B,2004,11(2):239-265.
    [29] SUN Shu-lin,CHEN Lan-sun.Dynamic behaviors of Monod type chemostat model with impulsive perturbation on the nutrient concentration[J].Journal of Mathematical Chemistry,2007,42(4):837-848. doi: 10.1007/s10910-006-9144-3
    [30] Bainov D,Simeonov P.Impulsive Differential Equations: Periodic Solutions and Applications[M].Harlow:Longman Scientific and Technical Press,1993.
    [31] Lakshmikantham V,Bainov D,Simeonov P.Theory of Impulsive Differential Equations[M].Singapore: World Scientific,1989.
    [32] LIU Xian-ning,CHEN Lan-sun.Complex dynamics of Holling type Ⅱ Lotka-Volterra predator-preysystem with impulsive perturbations on the predator[J].Chaos,Solitons and Fractals,2003,16(2):311-320. doi: 10.1016/S0960-0779(02)00408-3
    [33] Roberts M G, Kao R R. The dynamics of an infectious disease in a population with birth pulses[J].Mathematical Biosciences,1998,149(1):23-36. doi: 10.1016/S0025-5564(97)10016-5
    [34] Ballinger G,Liu X. Permanence of population growth models with impulsive effects[J].Mathematical and Computer Modelling,1997,26(12):59-72.
    [35] SUN Ming-jing,CHEN Lan-sun.Analysis of the dynamical behavior for enzyme-catalyzed reactions with impulsive input[J].Journal of Mathematical Chemistry,2006, DOI: 10.1007/s10910-006-9207-5.
    [36] 陈兰荪,陈健.非线性生物动力系统[M].北京:科学出版社.
    [37] Kuang Yang.Delay Differential Equations With Applications in Population Dynamics[M].San Diego, CA: Academic Press,Inc.1993.
  • 加载中
计量
  • 文章访问数:  3042
  • HTML全文浏览量:  106
  • PDF下载量:  756
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-09-05
  • 修回日期:  2007-12-10
  • 刊出日期:  2008-01-15

目录

    /

    返回文章
    返回