Elasticity Solution of Clamped-Simply Supported Beams With Variable Thickness
-
摘要: 研究了一端固支另一端简支连续变厚度梁在静力荷载作用下的应力和位移分布.通过引入单位脉冲函数和Dirac函数,将固支边等效为简支边与未知水平反力的叠加,利用平面应力问题的基本方程,导出满足控制微分方程及左右两端边界条件的位移函数的一般解,对上下表面的边界方程作Fourier级数展开,结合固支边位移为0的条件确定待定系数,得到的解是高精度的.数值结果与商业有限元软件ANSYS进行了比较,显示出很好的精度.Abstract: The stress and displacement distributions of continuously varying thickness beams with one end clamped and the other end simply supported under static loads are studied. By introducing the unit pulse functions and Dirac functions, the clamped edge can be made equivalent to the simply supported one by adding the unknown horizontal reactions. According to the governing equations of plane stress problem, the general expressions of displacements, which satisfy the governing differential equations and the boundary conditions at two ends of the beam, can be deduced. The unknown coefficients in the general expressions were then determined by using the Fourier sinusoidal series expansion along the upper and lower boundaries of the beams and using the condition of zero displacements at the clamped edge. The solution obtained has excellent convergence property. The numerical results being compared with those obtained from the commercial software ANSYS, excellent accuracy of the present method is demonstrated.
-
Key words:
- beam /
- clamped edge /
- variable thickness /
- Fourier expansion /
- elasticity solution
-
[1] Timoshenko S P,Goodier J C.Theory of Elasticity[M].New York: McGraw-Hill,1970. [2] 黄德进,丁浩江,王惠明.均布荷载作用下正交各向异性固支梁的解析解[J].浙江大学学报(工学版),2006,40(3):511-514. [3] Hashin Z. Plane anisotropic beams[J].Journal of Applied Mechanics,1967,34(1):257-263. doi: 10.1115/1.3607676 [4] 梅甫良,曾德顺.深梁的精确解[J].力学与实践,2002,24(3):58-60. [5] 梅甫良.两端固支深梁弯曲问题的解析解[J].强度与环境,2003,30(3):23-28. [6] 江爱民,邱洪林,林定远.均布荷载作用下简支磁电弹性梁的解析解[J].浙江工业大学学报,2004,32(2):239-244. [7] 江爱民,林定远,邱洪林.均布荷载作用下悬臂磁电弹性梁的解析解[J].应用力学学报,2004,21(4):106-109. [8] 林启荣,刘正兴,金占礼.均布荷载作用下的两端简支压电梁的解析解[J].应用数学和力学,2000,21(6):617-623. [9] Ding H J, Huang D J, Chen W Q. Elasticity solutions for plane anisotropic functionally graded beams[J].International Journal of Solids and Structures,2007,44(1):176-196. doi: 10.1016/j.ijsolstr.2006.04.026 [10] 刘庆潭.含楔形变截面梁静力分析的传递矩阵法求解[J].力学与实践,1993,15(1):64-66.
计量
- 文章访问数: 3799
- HTML全文浏览量: 194
- PDF下载量: 866
- 被引次数: 0