[1] |
Babuska I,Rheinboldt W C.A posteriori error analysis of finite element method for one-dimensional problems[J].SIAM Journal on Numerical Analysis,1981,18(3):565-589. doi: 10.1137/0718036
|
[2] |
Zienkiewicz O C,Zhu J Z.The superconvergence patch recovery (SPR) and a posteriori error estimates,Part 1:the recovery technique[J].Internat J Numer Methods Engrg,1992,33(7):1331-1364. doi: 10.1002/nme.1620330702
|
[3] |
Zienkiewicz O C,Zhu J Z.The superconvergence patch recovery (SPR) and a posteriori error estimates,Part 2:error estimates and adaptivity[J].Internat J Numer Methods Engrg,1992,33(7):1365-1382. doi: 10.1002/nme.1620330703
|
[4] |
林群,朱起定.有限元的预处理和后处理理论[M].上海:上海科学技术出版社,1994.
|
[5] |
陈传淼.有限元超收敛构造理论[M].长沙:湖南科学技术出版社,2002.
|
[6] |
Ascher U,Christiansen J,Russell R D.Algorithm 569,COLSYS:Collocation software for boundary value ODEs[J].ACM Trans Math Software,1981,7(2):223-229. doi: 10.1145/355945.355951
|
[7] |
YUAN Si.The Finite Element Method of Lines[M].Beijing-New York:Science Press,1993.
|
[8] |
袁驷.从矩阵位移法看有限元应力精度的损失与恢复[J].力学与实践,1998,20(4):1-6.
|
[9] |
袁驷,王枚.一维有限元后处理超收敛解答计算的EEP法[J].工程力学,2004,21(2):1-9.
|
[10] |
袁驷,王枚,和雪峰.一维C1有限元超收敛解答计算的EEP法[J].工程力学,2006,23(2):1-9.
|
[11] |
王玫,袁驷.Timoshenko梁单元超收敛结点应力的EEP法计算[J].应用数学和力学,2004,25(11):1224-1134.
|
[12] |
袁驷,林永静.二阶非自伴两点边值问题Galerkin有限元后处理超收敛解答计算的EEP法[J].计算力学学报,2007,24(2):142-147.
|
[13] |
袁驷,王枚,王旭.二维有限元线法超收敛解答计算的EEP法[J].工程力学,2007,24(1):1-10.
|
[14] |
袁驷,和雪峰.基于EEP法的一维有限元自适应求解[J].应用数学和力学,2006,27(11):1280-1291.
|
[15] |
赵庆华,周叔子,朱起定.一维有限元后处理的EEP的数学分析[J].应用数学和力学,2007,28(4):401-405.
|
[16] |
袁驷,王旭,邢沁妍,等.具有最佳超收敛阶的EEP法计算格式:Ⅰ 算法公式[J].工程力学,2007,24(10):1-5.
|
[17] |
袁驷,邢沁妍,王旭,等.具有最佳超收敛阶的EEP法计算格式:Ⅱ 数值算例[J].工程力学,2007,24(11):1-5.
|
[18] |
袁驷,赵庆华.具有最佳超收敛阶的EEP法计算格式:Ⅲ 数学证明[J].工程力学,2007,24(12):1-6.
|
[19] |
Douglas J,Dupont T.Galerkin approximations for the two point boundary problems using continuous piecewise polynomial spaces[J].Numerical Mathematics,1974,22(2):99-109. doi: 10.1007/BF01436724
|
[20] |
Strang G,Fix G.An Analysis of the Finite Element Method[M].London:Prentice-Hall,1973.
|
[21] |
王旭.基于EEP法的一维有限元与二维有限元线法自适应分析[D].博士学位论文.北京:清华大学,2007.
|