留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性耦合Rössler系统的相位同步化

刘勇 毕勤胜 陈予恕

刘勇, 毕勤胜, 陈予恕. 非线性耦合Rössler系统的相位同步化[J]. 应用数学和力学, 2008, 29(6): 631-638.
引用本文: 刘勇, 毕勤胜, 陈予恕. 非线性耦合Rössler系统的相位同步化[J]. 应用数学和力学, 2008, 29(6): 631-638.
LIU Yong, BI Qin-sheng, CHEN Yu-shu. Phase Synchronization Between Nonlinearly Coupled RL ssler Systems[J]. Applied Mathematics and Mechanics, 2008, 29(6): 631-638.
Citation: LIU Yong, BI Qin-sheng, CHEN Yu-shu. Phase Synchronization Between Nonlinearly Coupled RL ssler Systems[J]. Applied Mathematics and Mechanics, 2008, 29(6): 631-638.

非线性耦合Rössler系统的相位同步化

基金项目: 国家自然科学基金资助项目(2047604110602020)
详细信息
    作者简介:

    刘勇(1973- ),男,江苏盐城人,博士;毕勤胜,教授(联系人.Tel:+86-511-88791110;E-mail:qbi@ujs.edu.cn).

  • 中图分类号: O193

Phase Synchronization Between Nonlinearly Coupled RL ssler Systems

  • 摘要: 讨论了具有1∶1和1∶2内共振非线性耦合系统的混沌相位同步.通过引入混沌运动的相位定义说明对于不同的内共振系统,在相对小的参数下两个子系统的平均频率差接近于0,即在弱相互作用下两个振子相位同步.随着耦合力的增加,平均频率差有波动,与1∶2内共振情形相比,在主共振条件下两个子系统平均频率差的波动较小,即使在弱作用下也是如此.线性耦合力的增加增强了相位同步效应,而非线性耦合力的增加使得两个子系统由相位同步向不同步转化,且相位动力学与Liapunov的变化有关,这也可以通过扩散云图来证实.
  • [1] Pecora L M, Caroll T L.Synchronization in chaotic systems[J].Physical Review Letter,1990,64(8):821-824. doi: 10.1103/PhysRevLett.64.821
    [2] Zhang S H, Shen K.Generalized synchronization of chaos in erbium-doped dual-ring lasers[J].Chinese Physics,2002,11(9): 894-899. doi: 10.1088/1009-1963/11/9/308
    [3] Zhi L, Si S J. Global synchronization of Chua’s chaotic delay network by using linear matrix inequality[J].Chinese Physics,2004,13(8):1221-1225. doi: 10.1088/1009-1963/13/8/007
    [4] Kiss I Z, Zhai Y M, Hudson J L. Collective dynamics of chaotic chemical oscillators and law of large numbers[J].Physical Review Letter,2002,88(23):238301. doi: 10.1103/PhysRevLett.88.238301
    [5] Shi X, Lu Q S. Firing patterns and complete synchronization of coupled Hindmarsh-Rose neurons[J].Chinese Physics,2005,14(1):77-85. doi: 10.1088/1009-1963/14/1/016
    [6] Wang J, Deng B, Tsang K M. Chaotic synchronization of neurons coupled with gap junction under external electrical stimulation[J].Chaos, Soliton & Fractals,2004,22(2):469-476.
    [7] Shuai J W, Durand D M. Phase synchronization in two coupled chaotic neurons[J].Physics Letters A,1999,264(4):289-297. doi: 10.1016/S0375-9601(99)00816-6
    [8] Samuel B. Stability analysis for the synchronization of chaotic systems with different order: application to secure communication[J].Physics Letters A,2004,326(1):102-113. doi: 10.1016/j.physleta.2004.04.004
    [9] Kim C M, Kye W H, Rim S,et al.Communication key using delay times in time-delayed chaos synchronization[J].Physics Letters A,2004,333(3/4):235-240. doi: 10.1016/j.physleta.2004.09.080
    [10] Gonzalez-Miranda J M. Communications by synchronization of spatially symmetric chaotic systems[J].Physics Letters A,1999,251(2):115-120. doi: 10.1016/S0375-9601(98)00889-5
    [11] Rulkov N F, Sushchik M M, Tsimring L S,et al.Generalized synchronization of chaos in directionally coupled chaotic systems[J].Physical Review E,1995,51(2): 980-994. doi: 10.1103/PhysRevE.51.980
    [12] Winterhalder M, Schelter B, Kurths J,et al.Sensitivity and specificity of coherence and phase synchronization analysis[J].Physics Letters A,2006,356(1):26-34. doi: 10.1016/j.physleta.2006.03.018
    [13] Li X. Phase synchronization in complex networks with decayed long-range interactions[J].Physica D: Nonlinear Phenomena,2006,223(2):242-247. doi: 10.1016/j.physd.2006.09.026
    [14] Alatriste F R, Mateos J L. Phase synchronization in tilted deterministic ratchets[J].Physica A: Statistical Mechanics and Its Applications,2006,372(2):263-271. doi: 10.1016/j.physa.2006.08.038
    [15] Gabor D. Theory of communication[J].J IEE (London),Part Ⅲ,1946,93(26):429-457.
    [16] Pikovsky A, Roseblum M G, Osipov G,et al. Phase synronization of chaotic oscillators by external driving[J].Physica D,1997,104(3):219-238. doi: 10.1016/S0167-2789(96)00301-6
    [17] Pikovsky A. Phase synronization of chaotic oscillators by a periodic external field[J].Journal of Communications Technology Electronics,1985,30(3):1970-1974.
    [18] Pikovsky A, Roseblum M G, Osipov G,et al.Phase synronization in regular and chaotic systems[J].Journal of Bifurcation and Chaos,2000,10(10):2291-2305.
    [19] Landa P S, Roseblum M G. Synchronization and chaotization of oscillations in coupled self-oscillating systems[J].Application Mechanics Review,1993,46(7):414-426. doi: 10.1115/1.3120370
    [20] Zhang Z G, Hu G.Generalized synchronization versus phase synchronization[J].Physical Review E,2000,62(6):7882-7885. doi: 10.1103/PhysRevE.62.7882
    [21] Lv J H, Zhou T S, Zhang S C.Chaos synchronization between linearly coupled chaotic systems[J].Chaos, Solitons & Fractals,2002,14(4):529-541.
    [22] Landa P S, Perminov S M.Synchronization of the chaotic oscillations in the Mackey-Glass system[J].Radiofizika,1987,30(3):437-439.
    [23] Coombes S. Phase locking in the networks of synaptically coupled McKean relaxation oscillators[J].Physica D,2001,160(3):173-188. doi: 10.1016/S0167-2789(01)00352-9
    [24] Palus M. Detecting phase synchronization in noisy systems[J].Physics Letters A,1997,235(4):341-351. doi: 10.1016/S0375-9601(97)00635-X
    [25] Bi Q. Bifurcation of traveling wave solutions from KdV equation to Camassa-Holm equation[J].Physics Letters A,2005,344(5):361-368. doi: 10.1016/j.physleta.2005.06.096
    [26] Bi Q. Dynamical analysis of two coupled parametrically excited Van del Pol oscillators[J].Journal of Non-Linear Mechanics,2004,39(1) :33-54. doi: 10.1016/S0020-7462(02)00126-9
    [27] Bi Q. Dynamics and modulated chaos of coupled oscillators[J].Journal of Bifurcation and Chaos,2004,14(1):337-346. doi: 10.1142/S0218127404009041
  • 加载中
计量
  • 文章访问数:  2635
  • HTML全文浏览量:  101
  • PDF下载量:  546
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-10-26
  • 修回日期:  2008-04-14
  • 刊出日期:  2008-06-15

目录

    /

    返回文章
    返回