留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维矩形域内Stokes流问题的辛解析和数值方法

徐新生 王尕平 孙发明

徐新生, 王尕平, 孙发明. 二维矩形域内Stokes流问题的辛解析和数值方法[J]. 应用数学和力学, 2008, 29(6): 639-648.
引用本文: 徐新生, 王尕平, 孙发明. 二维矩形域内Stokes流问题的辛解析和数值方法[J]. 应用数学和力学, 2008, 29(6): 639-648.
XU Xin-sheng, WANG Ga-ping, SUN Fa-ming. Analytical and Numerical Method of Symplectic System for Stokes Flow in the Two-Dimensional Rectangular Domain[J]. Applied Mathematics and Mechanics, 2008, 29(6): 639-648.
Citation: XU Xin-sheng, WANG Ga-ping, SUN Fa-ming. Analytical and Numerical Method of Symplectic System for Stokes Flow in the Two-Dimensional Rectangular Domain[J]. Applied Mathematics and Mechanics, 2008, 29(6): 639-648.

二维矩形域内Stokes流问题的辛解析和数值方法

基金项目: 国家自然科学基金资助项目(10672031);博士学科点基金资助项目(20060141008)
详细信息
    作者简介:

    徐新生(1957- ),男,山东人,教授,博士,博士生导师(联系人.Tel:+86-411-84708393;E-mail:xsxu@dlut.edu.cn).

  • 中图分类号: O357.1

Analytical and Numerical Method of Symplectic System for Stokes Flow in the Two-Dimensional Rectangular Domain

  • 摘要: 给出了一种新的解析求解二维矩形域中的Stokes流动问题的方法——辛体系方法(Hamilton体系方法).在辛体系下,基本问题归结为本征值和本征解的问题.由于辛本征解之间存在辛正交共轭关系,问题的解和边界条件均可以由本征解描述和表示.利用辛本征解空间的完备性,建立一套封闭的求解问题方法.研究结果表明零本征值本征解描述了基本流动,而非零本征值本征解则表示问题的局部效应.数值结果给出了几种有代表性的流动情况,显示了该求解方法对求解许多问题的有效性.同时,这种方法也为研究其他问题提供了一条思路.
  • [1] Burggraf O R. Analytical and numerical studies of the structure of steady separated flows[J].J Fluid Mech,1966,24(1):113-151. doi: 10.1017/S0022112066000545
    [2] Pan F, Acrivos A. Steady flows in rectangular cavities[J].J Fluid Mech,1967,28(4):643-655. doi: 10.1017/S002211206700237X
    [3] Kelmanson M A, Lonsdale B. Eddy genesis in the double-lid-driven cavity[J].Q J Mech Appl Math,1996,49(4):633-655.
    [4] 林长圣.双板驱动矩形空腔STOKES流动的数值模拟[J].南京工程学院学报(自然科学版),2004,2(4):29-35.
    [5] Joseph D D, Sturges L. The convergence of biorthogonal series for biharmonic and Stokes flow edge problems: Part Ⅱ[J].SIAM J Appl Math,1978,34(1):7-26. doi: 10.1137/0134002
    [6] Smith R C T. The bending of a semi-infinite strip[J].Austral J Sci Res,1952,5(2):227-237.
    [7] Sturges L D. Stokes flow in a two-dimensional cavity with moving end walls[J].Phys Fluids,1986,29(5):1731-1734. doi: 10.1063/1.866008
    [8] Shankar P N. The eddy structure in Stokes flow in a cavity[J].J Fluid Mech,1993,250(1):371-383. doi: 10.1017/S0022112093001491
    [9] Gaskell P H, Savage M D, Summers J L,et al.Stokes flow in closed, rectangular domains[J].Appl Math Model,1998,22(9):727-743. doi: 10.1016/S0307-904X(98)10060-4
    [10] Khuri S A. Biorthogonal series solution of Stokes flow problems in sectorial regions[J].SIAM J Appl Math,1996,56(1):19-39. doi: 10.1137/0156002
    [11] Meleshko V V. Steady Stokes flow in a rectangular cavity[J].Proc Roy Soc London,Ser A,1996,452(1952):1999-2022. doi: 10.1098/rspa.1996.0106
    [12] Meleshko V V. Gomilko A M. Infinite systems for a biharmonic problem in a rectangle[J].Proc Roy Soc London,Ser A,1997,453(1965):2139-2160. doi: 10.1098/rspa.1997.0115
    [13] Srinivasan R. Accurate solutions for steady plane flow in the driven cavity —Ⅰ:Stokes flow[J].Zeitschrift für Angewandte Mathematik und Physik,1995,46(4):524-545. doi: 10.1007/BF00917442
    [14] Weiss R F, Florsheim B H. Flow in a cavity at low Reynolds number[J].Phys Fluids,1965,8(9):1631-1635. doi: 10.1063/1.1761474
    [15] Munson B R, Sturges L D.Low Reynolds number flow in a rotating tank with barriers[J].Phys Fluids,1983,26(5):1173-1176. doi: 10.1063/1.864281
    [16] Shen C, Floryan J M. Low Reynolds number flow over cavities[J].Phys Fluids,1985,28(11):3191-3202. doi: 10.1063/1.865366
    [17] Taneda S. Visualization of separating Stokes flows[J].J Phys Soc Jpn,1979,46(6):1935-1942. doi: 10.1143/JPSJ.46.1935
    [18] O'Brien V. Closed streamlines associated with channel flow over a cavity[J].Phys Fluids,1972,15(12):2089-2097. doi: 10.1063/1.1693840
    [19] Wang C Y. Flow over a surface with parallel grooves[J].Phys Fluids,2003,15(5):1114-1121. doi: 10.1063/1.1560925
    [20] Zhong W X.Duality System in Applied Mechanics and Optimal Control[M].New York:Kluwer Academic Publishers,2004,188-191.
    [21] 张鸿庆, 阿拉坦仓, 钟万勰. Hamilton体系与辛正交系的完备性[J].应用数学和力学,1997,18(3):217-221.
    [22] 徐新生,王尕平.Stokes 流问题中的辛本征解方法[J].力学学报,2006,38(5):682-687.
  • 加载中
计量
  • 文章访问数:  2976
  • HTML全文浏览量:  183
  • PDF下载量:  646
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-02-04
  • 修回日期:  2008-04-17
  • 刊出日期:  2008-06-15

目录

    /

    返回文章
    返回