留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微通道周期流动电位势及电粘性效应

龚磊 吴健康 王蕾 晁侃

龚磊, 吴健康, 王蕾, 晁侃. 微通道周期流动电位势及电粘性效应[J]. 应用数学和力学, 2008, 29(6): 649-656.
引用本文: 龚磊, 吴健康, 王蕾, 晁侃. 微通道周期流动电位势及电粘性效应[J]. 应用数学和力学, 2008, 29(6): 649-656.
GONG Lei, WU Jian-kang, Wang Lei, CHAO Kan. Periodical Streaming Potential and Electro-Viscous Effects in Microchannel Flow[J]. Applied Mathematics and Mechanics, 2008, 29(6): 649-656.
Citation: GONG Lei, WU Jian-kang, Wang Lei, CHAO Kan. Periodical Streaming Potential and Electro-Viscous Effects in Microchannel Flow[J]. Applied Mathematics and Mechanics, 2008, 29(6): 649-656.

微通道周期流动电位势及电粘性效应

基金项目: 国家自然科学基金资助项目(10472036)
详细信息
    作者简介:

    龚磊(1981- ),男,湖北人,博士(联系人.Tel:+86-27-87543338;E-mail:leis.gong@hotmail.com).

  • 中图分类号: O363.2

Periodical Streaming Potential and Electro-Viscous Effects in Microchannel Flow

  • 摘要: 求解了双电层的Poisson-Boltzmann方程和流体运动的Navier-Stokes方程,得到在周期压差作用下,二维微通道的周期流动电位势,流动诱导电场和液体流动速度的解析解.量纲分析表明,流体电粘性力与以下3个参数有关:1) 电粘性数,它表示定常流动时,通道最大电粘性力与压力梯度的比;2) 形状函数,它表示电粘性力在通道横截面的分布形态; 3) 耦合系数,它表示电粘性力的振幅衰减特征和相位差.分析结果表明,微通道周期流动诱导电场、流动速度与频率Reynolds数有关.在频率Reynolds数小于1时,流动诱导电场随频率Reynolds数变化很慢.在频率Reynolds数大于1时,流动诱导电场随频率Reynolds数的增加快速衰减.在通道宽度与双电层厚度比值较小情况下,电粘性效应对周期流动速度和流动诱导电场有重要影响.
  • [1] LI Dong-qing.Electrokinetics in Microfluidics[M].New York:Elsevier,2004.
    [2] Clayton Julie.Go with the microflow[J].Nature Methods,2005,2(8):621-627. doi: 10.1038/nmeth0805-621
    [3] Mohamed Gad-el-Hak.The MEMS Handbook[M].New York: CRC Press,1999.
    [4] 李志华,林建忠,聂德明.消除毛细管电泳槽道中弯道导致的扩散效应的新方法[J].应用数学和力学,2005,26(6):631-636.
    [5] 张凯,林建忠,李志华.电渗驱动微通道流中的扩散[J].应用数学和力学,2006,27(5):512-518.
    [6] WANG Xian-ming, WU Jian-kang. Flow behavior of periodical electroosmosis in microchannel for biochips[J].J Colloid Interface Sci,2006,293(3):483-488. doi: 10.1016/j.jcis.2005.06.080
    [7] Ren Carolyn L,LI Dong-qing. Improved understanding of the effect of electrical double layer on pressure-driven flow in microchannels[J].Analytica Chimica Acta,2005,531(1):15-23. doi: 10.1016/j.aca.2004.09.078
    [8] Mala G M,LI D. Flow characteristics of water in microtubes[J].Internat J Heat Fluid Flow,1999,20(2):142-148. doi: 10.1016/S0142-727X(98)10043-7
    [9] 龚磊, 吴健康.微通道液体流动双电层主力效应[J].应用数学和力学,2006,27(10):1219-1225.
    [10] Hunter R J.Zeta Potential in Colloid Science[M].London:Academic Press,1981.
    [11] Erickson David, LI Dong-qing, Werner Carsten. An improved method of determining the zeta-potential and surface conductance[J].J Colloid Interface Sci,2001,232(1):186-197.
    [12] Mikhailov O V, Haartsen M W. Electroseismic investigation of the shallow subsurface:field measurements and numerical modeling[J].Geophysics,1997,62(1): 97-105. doi: 10.1190/1.1444150
    [13] Mansouri Ali, Scheuerman Carl, Bhattacharjee Subir,et al.Transient streaming potential in a finite length microchannel[J].J Colloid Interface Sci,2005,292(2):567-580. doi: 10.1016/j.jcis.2005.05.094
    [14] Frank H J, Van der Heyden, Derek Stein,et al.Streaming currents in a single nanofluidic channel[J].Phys Rev Lett,2005,95(11):116104. doi: 10.1103/PhysRevLett.95.116104
    [15] Rice C L,Whitehead R.Electrokinetic flow in narrow cylindrical capillary[J].J Phys Chem,1965,69(11):4017-4024. doi: 10.1021/j100895a062
    [16] LI Dong-qing. Electro-viscous effects on pressure-driven liquid flow in microchannels[J].Colloids and Surfaces Physicochemical and Engineering Aspects,2001,195(1):35-37. doi: 10.1016/S0927-7757(01)00828-7
    [17] Packard Robert Gay.Streaming potential across glass capillaries for sinusoidal pressure[J].J Chem Phys,1953,21(2):303-307. doi: 10.1063/1.1698876
    [18] Pride Steve.Governing equations for coupled electromagnetics and acoustics of porous media[J].Phys Rev B,1994,50(15):678-696.
    [19] Philip M Reppert,Frank Dale Morgan,David P Lesmes.Frequency-dependent streaming potentials[J].J Colloid Interface Sci,2001,234(1):194-203. doi: 10.1006/jcis.2000.7294
    [20] Overbeek J Th.Irreversible Systems[M].New York:Elsevier, 1952.
    [21] Erickson D, LI D. Analysis of alternating current electroosmotic flows in a rectangular microchannel[J].Langmuir,2003,19(13):5421-5430. doi: 10.1021/la027035s
  • 加载中
计量
  • 文章访问数:  3111
  • HTML全文浏览量:  122
  • PDF下载量:  1061
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-12-18
  • 修回日期:  2008-03-24
  • 刊出日期:  2008-06-15

目录

    /

    返回文章
    返回