留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

昆虫拍动翅的非定常变形对其气动力的影响

杜刚 孙茂

杜刚, 孙茂. 昆虫拍动翅的非定常变形对其气动力的影响[J]. 应用数学和力学, 2008, 29(6): 663-675.
引用本文: 杜刚, 孙茂. 昆虫拍动翅的非定常变形对其气动力的影响[J]. 应用数学和力学, 2008, 29(6): 663-675.
LIU Xin-jian, YUAN Tian-bao. Effects of Unsteady Deformation of a Flapping Wing on Its Aerodynamic Forces[J]. Applied Mathematics and Mechanics, 2008, 29(6): 663-675.
Citation: LIU Xin-jian, YUAN Tian-bao. Effects of Unsteady Deformation of a Flapping Wing on Its Aerodynamic Forces[J]. Applied Mathematics and Mechanics, 2008, 29(6): 663-675.

昆虫拍动翅的非定常变形对其气动力的影响

详细信息
    作者简介:

    杜刚(1974- ),男,四川省邻水人,博士(联系人.E-mail:dugang@buaa.edu.cn).

  • 中图分类号: O355

Effects of Unsteady Deformation of a Flapping Wing on Its Aerodynamic Forces

  • 摘要: 通过在动态变形网格上求解N-S方程的方法,研究了昆虫拍动翅的非定常变形对其气动力的影响.其中,拍动翅的扭转变形对气动力影响很小,拱形变形则会产生显著的影响,扭转和拱形组合变形的效果与拱形变形单独的效果基本相同.在6%拱形和20度扭转组合变形的情况下(此为对大量昆虫观察所得到的典型值),相对于无变形平板翅,升力增加了10~20%,升阻比增加了约10%.翅膀的变形可增大最大升力系数;同时,可减小飞行的能耗,例如,对于做悬停飞行的熊蜂,其翅膀的动态变形(6%拱形和20度扭转组合变形)使其飞行中的能耗比无变形情况降低了约16%.
  • [1] Dickinson M H, Gtz K G.Unsteady aerodynamic performance of model wings at low Reynolds numbers[J].J Exp Biol,1993,174(1):45-64.
    [2] Ellington C P, Van den Berg C.Willmott A P. Leading edge vortices in insect flight[J].Nature,1996,384(6610):626-630. doi: 10.1038/384626a0
    [3] Willmott A P, Ellington C P, Thomas A R.Flow visualization and unsteady aerodynamics in the flight of the hawkmoth, Manduca sexta[J].Philos Trans Roy Soc Lond,Ser B,1997,352(1351):303-316. doi: 10.1098/rstb.1997.0022
    [4] Liu H, Ellington C P, Kawachi K,et al.A computational fluid dynamic study of hawkmoth hovering[J].J Exp Biol,1998,201(4):461-477.
    [5] Sun M, Tang J. Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion[J].J Exp Biol,2002,205(1):55-70.
    [6] Dickinson M H, Lehman F O,Sane S P.Wing rotation and the aerodynamic basis of insect flight[J].Science,1999,284(5422):1954-1960. doi: 10.1126/science.284.5422.1954
    [7] Usherwood J R, Ellington C P. The aerodynamics of revolving wings—Ⅱ:Propeller force coefficients from mayfly to quail[J].J Exp Biol,2002,205(11):1565-1576.
    [8] Ellington C P. The aerodynamics of hovering insect flight—Ⅲ:Kinematics[J].Philos Trans Roy Soc Lond,Ser B,1984,305(1122):41-78. doi: 10.1098/rstb.1984.0051
    [9] Ellington C P. The aerodynamics of hovering insect flight—Ⅳ:Aerodynamic mechanisms[J].Philos Trans Roy Soc Lond,Ser B,1984,305(1122):79-113. doi: 10.1098/rstb.1984.0052
    [10] Ellington C P. The aerodynamics of hovering insect flight—Ⅵ:Lift and power requirements[J].Philos Trans Roy Soc Lond,Ser B,1984,305(1122): 145-181. doi: 10.1098/rstb.1984.0054
    [11] Ennos A R. The kinematics and aerodynamics of the free flight of some Diptera[J].J Exp Biol,1989,142(1):49-85.
    [12] Dudley R. The mechanics of forward flight in insects[D].Ph D thesis.Cambridge:Cambridge University, 1987.
    [13] Wang H, Zeng L J, Yin C Y. Measuring the body position, attitude and wing deformation of a free-flight dragonfly by combining a comb fringe pattern with sign points on the wing[J].Meas Sci Tech,2002,13(6): 903-908. doi: 10.1088/0957-0233/13/6/311
    [14] Ennos A R. The importance of torsion in the design of insect wings[J].J Exp Biol,1988,140(1):137-160.
    [15] Ennos A R, Wootton R J. Functional wing morphology and aerodynamics of Panorpa germanica (insecta: Mecopter)[J].J Exp Biol,1989,143(1):267-284.
    [16] Wootton R J, Herbert R C,Yong P G,et al.Approaches to the structural modeling of insect wings[J].Philos Trans Roy Soc Lond,Ser B,2003,358(1437):1577-1587. doi: 10.1098/rstb.2003.1351
    [17] Vogel S. Flight in Drosophila—Ⅲ:Aerodynamic characteristics of fly wings and wing models[J].J Exp Biol,1966,44(3):567-578.
    [18] Dudley R, Ellington C P. Mechanics of forward flight in bumblebees—Ⅱ:Quasi-steady lift and power requirements[J].J Exp Biol,1990,148(1): 53-88.
    [19] Thomas P D, Lombard C K. Geometric conservation law and its application to flow computations on moving grids[J].AIAA J,1979,17(10):1030-1037. doi: 10.2514/3.61273
    [20] Rogers S E, Kwak D. Upwind differencing scheme for the time-accurate incompressible Navier-Stokes equations[J].AIAA J,1990,28(2):253-262. doi: 10.2514/3.10382
    [21] Rogers S E, Kwak D, Kiris C. Steady and unsteady solutions of the incompressible Navier-Stokes equations[J].AIAA J,1991,29(4):603-610. doi: 10.2514/3.10627
    [22] Morton S A, Melville R B, Visbal M R. Accuracy and coupling issues of aeroelastic Navier-Stokes solutions on deforming meshes[J].J Aircraft,1998,35(5):798-805. doi: 10.2514/2.2372
    [23] Hilgenstock A. A fast method for the elliptic generation of three dimensional grid with full boundary control[A].In:Sengupta S, Hauser J, Eiseman P R,et al,Eds.Numerical Grid Generation in CFM’88[C].1988, Swansea UK: Pineridge Press Ltd,1988,137-146.
    [24] Wu J H, Sun M. Unsteady aerodynamic forces of a flapping wing[J].J Exp Biol,2004,207(7):1137-1150. doi: 10.1242/jeb.00868
    [25] Fry S N, Sayaman R, Dickinson M H. The aerodynamics of hovering flight in Drosophila[J].J Exp Biol,2005,208(12):2303-2318. doi: 10.1242/jeb.01612
    [26] Wu J H, Sun M. Unsteady aerodynamic forces and power requirements of a bumblebee in forward flight[J].Acta Mech Sinica,2005,21(3):207-217. doi: 10.1007/s10409-005-0039-5
  • 加载中
计量
  • 文章访问数:  2722
  • HTML全文浏览量:  147
  • PDF下载量:  596
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-01-17
  • 修回日期:  2008-04-17
  • 刊出日期:  2008-06-15

目录

    /

    返回文章
    返回