留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

短纤维复合材料的本征应变边界积分方程计算模型

马杭 夏利伟 秦庆华

马杭, 夏利伟, 秦庆华. 短纤维复合材料的本征应变边界积分方程计算模型[J]. 应用数学和力学, 2008, 29(6): 687-695.
引用本文: 马杭, 夏利伟, 秦庆华. 短纤维复合材料的本征应变边界积分方程计算模型[J]. 应用数学和力学, 2008, 29(6): 687-695.
MA Hang, XIA Li-wei, QIN Qing-hua. Computational Model for Short-Fiber Composites With Eigen-Strain Formulation of Boundary Integral Equations[J]. Applied Mathematics and Mechanics, 2008, 29(6): 687-695.
Citation: MA Hang, XIA Li-wei, QIN Qing-hua. Computational Model for Short-Fiber Composites With Eigen-Strain Formulation of Boundary Integral Equations[J]. Applied Mathematics and Mechanics, 2008, 29(6): 687-695.

短纤维复合材料的本征应变边界积分方程计算模型

基金项目: 国家自然科学基金资助项目(10772106)
详细信息
    作者简介:

    马杭(1951- ),男,山东青州人,教授(联系人.E-mail:hangma@staff.shu.edu.cn).

  • 中图分类号: O241

Computational Model for Short-Fiber Composites With Eigen-Strain Formulation of Boundary Integral Equations

  • 摘要: 提出了短纤维复合材料的本征应变边界积分方程计算模型,并采用新发展的边界点法进行了求解.模型依据Eshelby等效夹杂物的概念并借助Eshelby张量,采用迭代方法来计算基体中各种性能短纤维的本征应变,其中所需的Eshelby张量不难通过解析或数值方法获得.由于未知量只出现在边界上,与已有的有限元和边界元模型相比,提出的计算模型可极大地减小异质体问题的求解规模,提高计算效率.通过数值算例计算了代表性体积单元上各种短纤维复合材料的整体弹性性能,验证了计算模型和求解方法的正确性和有效性.
  • [1] Eshelby J D.The determination of the elastic field of an ellipsoidal inclusion and related problems[J].Proceedings of the Royal Society of London,Ser A,1957,241(1226):376-396. doi: 10.1098/rspa.1957.0133
    [2] Mura T, Shodja H M, Hirose Y.Inclusion problems (part 2)[J].Applied Mechanics Review,1996,49(10):S118-S127.
    [3] Kiris A, Inan E.Eshelby tensors for a spherical inclusion in microelongated elastic fields[J].International Journal of Engineering Science,2005,43(1/2):49-58. doi: 10.1016/j.ijengsci.2004.06.002
    [4] Mercier S, Jacques N, Molinari A. Validation of an interaction law for the Eshelby inclusion problem in elasto-viscoplasticity[J].International Journal of Solids and Structures,2005,42(7):1923-1941. doi: 10.1016/j.ijsolstr.2004.08.016
    [5] Federico S, Grilloc A, Herzog W. A transversely isotropic composite with a statistical distribution of spheroidal inclusions: a geometrical approach to overall properties[J].Journal of the Mechanics and Physics of Solids,2004,52(10):2309-2327. doi: 10.1016/j.jmps.2004.03.010
    [6] Shen L X, Yi S. An effective inclusion model for effective moduli of heterogeneous materials with ellipsoidal inhomogeneities[J].International Journal of Solids and Structures,2001,38(32/33):5789-5805. doi: 10.1016/S0020-7683(00)00370-X
    [7] Kakavas P A, Kontoni D N. Numerical investigation of the stress field of particulate reinforced polymeric composites subjected to tension[J].International Journal for Numerical Methods in Engineering,2006,65(7):1145-1164. doi: 10.1002/nme.1483
    [8] Lee J, Choi S, Mal A. Stress analysis of an unbounded elastic solid with orthotropic inclusions and voids using a new integral equation technique[J].International Journal of Solids and Structures,2001,38(16):2789-2802. doi: 10.1016/S0020-7683(00)00182-7
    [9] Dong C Y, Cheung Y K, Lo S H. A regularized domain integral formulation for inclusion problems of various shapes by equivalent inclusion method[J].Computer Methods in Applied Mechanics and Engineering,2002,191(31):3411-3421. doi: 10.1016/S0045-7825(02)00261-X
    [10] Dong C Y, Lee K Y. Effective elastic properties of doubly periodic array of inclusions of various shapes by the boundary element method[J].International Journal of Solids and Structures,2006,43(25/26):7919-7938. doi: 10.1016/j.ijsolstr.2006.04.009
    [11] Nakasone Y, Nishiyama H, Nojiri T. Numerical equivalent inclusion method: a new computational method for analyzing stress fields in and around inclusions of various shapes[J].Materials Science and Engineering, A,2000,285(1/2):229-238. doi: 10.1016/S0921-5093(00)00637-7
    [12] Liu Y J, Nishimura N, Tanahashi T,et al.A fast boundary element method for the analysis of fiber-reinforced composites based on a rigid-inclusion model[J].ASME Journal of Applied Mechanics,2005,72(1):115-128. doi: 10.1115/1.1825436
    [13] Ma H, Deng H L. Nondestructive determination of welding residual stresses by boundary element method[J].Advances in Engineering Software,1998,29(2):89-95. doi: 10.1016/S0965-9978(98)00051-9
    [14] Greengard L F, Rokhlin V. A fast algorithm for particle simulations[J]. Journal of Computational Physics,1987,73(2):325-348. doi: 10.1016/0021-9991(87)90140-9
    [15] Kompis V, Kompis M, Kaukic M. Method of continuous dipoles for modeling of materials reinforced by short micro-fibers[J].Engineering Analysis With Boundary Elements,2007,31(5):416-424. doi: 10.1016/j.enganabound.2006.10.008
    [16] MA Hang,QIN Qing-hua.Solving potential problems by a boundary-type meshless method—the boundary point method based on BIE[J].Engineering Analysis With Boundary Elements,2007,31(9):749-761. doi: 10.1016/j.enganabound.2007.03.001
    [17] Brebbia C A, Telles J C F, Wrobel L C.Boundary Element Techniques—Theory and Applications in Engineering[M].Berlin: Springer, 1984.
    [18] Ma H, Kamiya N, Xu S Q. Complete polynomial expansion of domain variables at boundary for two-dimensional elasto-plastic problems[J].Engineering Analysis With Boundary Elements,1998,21(3):271-275. doi: 10.1016/S0955-7997(98)00017-4
    [19] Ma H, Kamiya N. Boundary-type integral formulation of domain variables for three-dimensional initial strain problems[J].JSCE Journal of Applied Mechanics,1998,1(1):355-364.
  • 加载中
计量
  • 文章访问数:  2976
  • HTML全文浏览量:  171
  • PDF下载量:  743
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-07-25
  • 修回日期:  2008-04-17
  • 刊出日期:  2008-06-15

目录

    /

    返回文章
    返回