留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于LMI的时滞细胞神经网络的全局渐近稳定性分析

刘德友 张建华 关新平 肖晓丹

刘德友, 张建华, 关新平, 肖晓丹. 基于LMI的时滞细胞神经网络的全局渐近稳定性分析[J]. 应用数学和力学, 2008, 29(6): 735-740.
引用本文: 刘德友, 张建华, 关新平, 肖晓丹. 基于LMI的时滞细胞神经网络的全局渐近稳定性分析[J]. 应用数学和力学, 2008, 29(6): 735-740.
LIU De-you, ZHANG Jian-hua, GUAN Xin-ping, XIAO Xiao-dan. Generalized LMI-Based Approach to the Global Asymptotic Stability of Cellular Neural Networks With Delay[J]. Applied Mathematics and Mechanics, 2008, 29(6): 735-740.
Citation: LIU De-you, ZHANG Jian-hua, GUAN Xin-ping, XIAO Xiao-dan. Generalized LMI-Based Approach to the Global Asymptotic Stability of Cellular Neural Networks With Delay[J]. Applied Mathematics and Mechanics, 2008, 29(6): 735-740.

基于LMI的时滞细胞神经网络的全局渐近稳定性分析

基金项目: 国家自然科学基金资助项目(60604004);河北省自然科学基金资助项目(F2007000637);国家杰出青年自然科学基金资助项目(60525303)
详细信息
    作者简介:

    刘德友,(1961- ),男,齐齐哈尔人,教授,博士(联系人.Tel:+86-335-8875666;E-mail:li-udeyouysu@163.com).

  • 中图分类号: TP183

Generalized LMI-Based Approach to the Global Asymptotic Stability of Cellular Neural Networks With Delay

  • 摘要: 研究了一类具有时滞的细胞神经网络的稳定性问题,利用Liapunov-Krasovskii泛函的方法,给出了时滞相关的稳定性判据.稳定性判据是以线性矩阵不等式(LMI)的形式给出,可以很容易得出时滞的上界.在得到时滞相关的稳定性判据的同时也可以得到时滞无关的稳定性判据,包含了已有文章中的很多结果.最后,数值算例说明了结果的优越性.
  • [1] Chua L O,Yang L.Cellular neural networks: Theory[J].IEEE Trans,Circuits and Systems,1988,35(10):1257-1272. doi: 10.1109/31.7600
    [2] Roska T,Boros T,Thiran P,et al.Detecting simple motion using cellular neural networks[A].In:Proceedings 1990 IEEE Internat Workshop on Cellular Neural Networks and Their Applications[C].1990,127-138.
    [3] Singh Vimal. A Generalized LMI-Based approach to the global asymptotic stability of cellular neural networks[J].IEEE Transaction on Neural Networks,2004,15(1):223-225. doi: 10.1109/TNN.2003.820616
    [4] LOU Xu-gang,CUI Bao-tong.Global asymptotic stability of delay BAM neural networks with impulses[J].Chaos, Solitons and Fractals,2006,29(4):1023-1031. doi: 10.1016/j.chaos.2005.08.125
    [5] CHEN Wu-hua,ZHENG Wei-xing.Global asymptotic stability of a class of neural networks with distributed delays[J].IEEE Trans,Circuits and Systems,2006,53(3):644-652. doi: 10.1109/TCSI.2005.859051
    [6] Singh Vimal.Global asymptotic stability of neural networks with delay: Comparative evaluation of two criteria[J].Chaos, Solitons and Fractals,2007,31(5):1187-1190. doi: 10.1016/j.chaos.2006.01.045
    [7] Arik Sabri.An analysis of exponential stability of delayed neural networks with time varying delays[J].Neural Networks,2004,17(7):1027-1031. doi: 10.1016/j.neunet.2004.02.001
    [8] HUA Chang-chun,LONG Cheng-nian,GUAN Xin-ping.New results on stability analysis of neural networks with time-varying delays[J].Physics Letter A,2006,352:335-240. doi: 10.1016/j.physleta.2005.12.005
    [9] Cao J,WANG Jun.Global asymptotic stability of a general class of recurrent neural networks with time-varying delays[J].IEEE Transactions,Circuits and Systems I: Fundamental Theory and Applications,2003,50(1):34-44. doi: 10.1109/TCSI.2002.807494
    [10] 周冬明,曹进德,张立明.时滞神经网络全局渐近稳定性条件[J].应用数学和力学,2005,26(3):341-348.
    [11] GU Ke-qin.An integral inequality in the stability problem of time-delay systems[A].In:Proceedings of the 39th IEEE Conference on Decision and Control[C].Vol 3.Sydney,Australia,2000,2805-2810.
  • 加载中
计量
  • 文章访问数:  2382
  • HTML全文浏览量:  112
  • PDF下载量:  516
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-08-23
  • 修回日期:  2008-04-21
  • 刊出日期:  2008-06-15

目录

    /

    返回文章
    返回