From the Second Gradient Operator and Second Category of Integral Theorems to Gauss or Spherical Mapping Invariants
-
摘要: 将第二类梯度算子、第二类积分定理、Gauss曲率相关的积分定理和Gauss(球面)映射相结合,证明了一系列Gauss(球面)映射不变量.从这些不变量中,得到一系列从原始曲面到(Gauss单位)球面的变换.这些不变量和变换,在几何学、物理学、生物力学和力学中,都有潜在的用途.
-
关键词:
- 第二类梯度算子 /
- 第二类积分定理 /
- Gauss曲率 /
- Gauss(球面)映射 /
- 不变量
Abstract: Through the combination of the second gradient operator,the second category of integral theorems,the Gauss-curvature-based integral theorems and the Gauss(or spherical) mapping,a series of invariants or geometric conservation quantities under Gauss(or spherical) mapping were revealed.From these mapping invariants important transfor mations between original curved surface and the spherical surface were derived.The potential applications of these invariants and transformations to geometryare prospected. -
[1] Baumgart T, Hess S T, Webb W. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension[J].Nature,2003,425(6960):821-824. doi: 10.1038/nature02013 [2] YIN Ya-jun, CHEN Yan-qiu, NI Dong,et al.Shape equations and curvature bifurcations induced by inhomogeneous rigidities in cell membranes[J].J Biomechanics,2005,38(7):1433-1440. doi: 10.1016/j.jbiomech.2004.06.024 [3] Yin Y, Yin J, Ni D. General mathematical frame for open or closed biomembranes: equilibrium theory and geometrically constraint equation[J].Journal of Mathematical Biology,2005,51(4):403-413. doi: 10.1007/s00285-005-0330-x [4] Yin Y, Yin J, Lv C. Equilibrium theory in 2D Riemann manifold for heterogeneous biomembranes with arbitrary variational modes[J].Journal of Geometry and Physics,2008,58(1):122-132. doi: 10.1016/j.geomphys.2007.10.001 [5] YIN Ya-jun. Integral theorems based on a new gradient operator derived from biomembranes (Part Ⅰ): Fundamentals[J].Tsinghua Science and Technology,2005,10(3):372-375. doi: 10.1016/S1007-0214(05)70083-3 [6] YIN Ya-jun. Integral theorems based on a new gradient operator derived from biomembranes (Part Ⅱ): Applications[J].Tsinghua Science and Technology,2005,10(3):376-380. doi: 10.1016/S1007-0214(05)70084-5 [7] Yin Y, YIN Jie, WU Ji-ye.The second gradient operator and integral theorems for tensor fields on curved surfaces[J].Applied Mathematical Sciences,2007,1(30):1465-1484. [8] Yin Y, Wu J. Symmetrical fundamental tensors, differential operators, and integral theorems in differential geometry[J].Tsinghua Science and Technology,2008,13(2):121-126. [9] 黄克智,薛明德,陆明万.张量分析(第二版)[M].北京:清华大学出版社,2003.
计量
- 文章访问数: 2881
- HTML全文浏览量: 197
- PDF下载量: 620
- 被引次数: 0