留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

从第二类梯度算子和第二类积分定理到Gauss(球面)映射不变量

殷雅俊 吴继业 黄克智 范钦珊

殷雅俊, 吴继业, 黄克智, 范钦珊. 从第二类梯度算子和第二类积分定理到Gauss(球面)映射不变量[J]. 应用数学和力学, 2008, 29(7): 775-782.
引用本文: 殷雅俊, 吴继业, 黄克智, 范钦珊. 从第二类梯度算子和第二类积分定理到Gauss(球面)映射不变量[J]. 应用数学和力学, 2008, 29(7): 775-782.
YIN Ya-jun, WU Ji-ye, HUANG Ke-zhi, FAN Qin-shan. From the Second Gradient Operator and Second Category of Integral Theorems to Gauss or Spherical Mapping Invariants[J]. Applied Mathematics and Mechanics, 2008, 29(7): 775-782.
Citation: YIN Ya-jun, WU Ji-ye, HUANG Ke-zhi, FAN Qin-shan. From the Second Gradient Operator and Second Category of Integral Theorems to Gauss or Spherical Mapping Invariants[J]. Applied Mathematics and Mechanics, 2008, 29(7): 775-782.

从第二类梯度算子和第二类积分定理到Gauss(球面)映射不变量

基金项目: 国家自然科学基金资助项目(10572076)
详细信息
    作者简介:

    殷雅俊(1964- ),男,河南人,教授,博士,博士生导师(联系人.Tel:+86-10-62795536;E-mail:jinyj@mail.tsinghua.edu.cn).

  • 中图分类号: O186.1

From the Second Gradient Operator and Second Category of Integral Theorems to Gauss or Spherical Mapping Invariants

  • 摘要: 将第二类梯度算子、第二类积分定理、Gauss曲率相关的积分定理和Gauss(球面)映射相结合,证明了一系列Gauss(球面)映射不变量.从这些不变量中,得到一系列从原始曲面到(Gauss单位)球面的变换.这些不变量和变换,在几何学、物理学、生物力学和力学中,都有潜在的用途.
  • [1] Baumgart T, Hess S T, Webb W. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension[J].Nature,2003,425(6960):821-824. doi: 10.1038/nature02013
    [2] YIN Ya-jun, CHEN Yan-qiu, NI Dong,et al.Shape equations and curvature bifurcations induced by inhomogeneous rigidities in cell membranes[J].J Biomechanics,2005,38(7):1433-1440. doi: 10.1016/j.jbiomech.2004.06.024
    [3] Yin Y, Yin J, Ni D. General mathematical frame for open or closed biomembranes: equilibrium theory and geometrically constraint equation[J].Journal of Mathematical Biology,2005,51(4):403-413. doi: 10.1007/s00285-005-0330-x
    [4] Yin Y, Yin J, Lv C. Equilibrium theory in 2D Riemann manifold for heterogeneous biomembranes with arbitrary variational modes[J].Journal of Geometry and Physics,2008,58(1):122-132. doi: 10.1016/j.geomphys.2007.10.001
    [5] YIN Ya-jun. Integral theorems based on a new gradient operator derived from biomembranes (Part Ⅰ): Fundamentals[J].Tsinghua Science and Technology,2005,10(3):372-375. doi: 10.1016/S1007-0214(05)70083-3
    [6] YIN Ya-jun. Integral theorems based on a new gradient operator derived from biomembranes (Part Ⅱ): Applications[J].Tsinghua Science and Technology,2005,10(3):376-380. doi: 10.1016/S1007-0214(05)70084-5
    [7] Yin Y, YIN Jie, WU Ji-ye.The second gradient operator and integral theorems for tensor fields on curved surfaces[J].Applied Mathematical Sciences,2007,1(30):1465-1484.
    [8] Yin Y, Wu J. Symmetrical fundamental tensors, differential operators, and integral theorems in differential geometry[J].Tsinghua Science and Technology,2008,13(2):121-126.
    [9] 黄克智,薛明德,陆明万.张量分析(第二版)[M].北京:清华大学出版社,2003.
  • 加载中
计量
  • 文章访问数:  2914
  • HTML全文浏览量:  204
  • PDF下载量:  620
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-11-20
  • 修回日期:  2008-06-12
  • 刊出日期:  2008-07-15

目录

    /

    返回文章
    返回