留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁弹性耦合效应引起的铁磁直杆磁场中振动频率的改变

王省哲

王省哲. 磁弹性耦合效应引起的铁磁直杆磁场中振动频率的改变[J]. 应用数学和力学, 2008, 29(8): 927-935.
引用本文: 王省哲. 磁弹性耦合效应引起的铁磁直杆磁场中振动频率的改变[J]. 应用数学和力学, 2008, 29(8): 927-935.
WANG Xing-zhe. Changes of Natural Frequency of a Ferromagnetic Rod in Magnetic Field Due to Magnetoelastic Interaction[J]. Applied Mathematics and Mechanics, 2008, 29(8): 927-935.
Citation: WANG Xing-zhe. Changes of Natural Frequency of a Ferromagnetic Rod in Magnetic Field Due to Magnetoelastic Interaction[J]. Applied Mathematics and Mechanics, 2008, 29(8): 927-935.

磁弹性耦合效应引起的铁磁直杆磁场中振动频率的改变

基金项目: 国家自然科学基金资助项目(10502022);教育部新世纪优秀人才支持计划资助项目(NCET-050878)
详细信息
    作者简介:

    王省哲(1972- ),男,陕西扶风人,教授(Tel:+86-931-8913956;E-mail:xzwangl@lzu.edu.cn).

  • 中图分类号: O344

Changes of Natural Frequency of a Ferromagnetic Rod in Magnetic Field Due to Magnetoelastic Interaction

  • 摘要: 基于磁弹性广义变分原理和Hamilton原理,对处于外加磁场中的软铁磁体,建立了磁弹性动力学理论模型.分别通过关于铁磁杆磁标势和弹性位移的变分运算,获得了包含磁场和弹性变形的所有基本方程,并给出描述磁弹性耦合作用的磁体力和磁面力.采用摄动技术和Galerkin方法,将所建立的磁弹性理论模型用于外加磁场中铁磁直杆的振动分析.结果表明,由于磁弹性耦合效应,外加磁场将对铁磁杆的振动频率产生影响:当铁磁杆的振动位移沿着磁场方向时,其频率减小并出现磁弹性屈曲失稳;当铁磁杆的振动位移垂直于磁场方向时,其频率将会增大.理论模型能够很好地解释已有实验观测的振动频率改变现象.
  • [1] Moon F C,Pao Y H.Magnetoelastic buckling of a thin plate[J].ASME J Appl Mech,1968,35(1):53-58. doi: 10.1115/1.3601173
    [2] Moon F C,Pao Y H.Vibration and dynamic instability of a beam-plate in a transverse magnetic field[J].ASME J Appl Mech,1969,36(1):1-9. doi: 10.1115/1.3564580
    [3] Dalrymple J M,Peach M O,Viegelaha G L.Magnetoelastic buckling of thin magnetically soft plate in cylinder model[J].ASME J Appl Mech,1974,41(1):145-150. doi: 10.1115/1.3423210
    [4] Miya K,Hara K,Someya K.Experimental and theoretical study on magnetoelastic buckling of a ferromagnetic cantilevered beam-plate[J].ASME J Appl Mech,1978,45(3):355-360. doi: 10.1115/1.3424301
    [5] Peach M O,Christopherson N S,Dalrymple J M,et al.Magnetoelastic buckling:why theory and experiment disagree[J].Exp Mech,1988,28(1):65-69. doi: 10.1007/BF02328998
    [6] Brown W F.Magnetoelastic Interaction[M].Tracts.In:Natural Philosophy,No.9. Berlin:Springer,1966.
    [7] Pao Y H, Yeh C S.A linear theory for soft ferromagnetic elastic solid[J].Internat J Engrg Sci,1973,11(4):415-436. doi: 10.1016/0020-7225(73)90059-1
    [8] Van Lieshout P H,Rongen P M J, Van de Ven A A F.A variational principle for magnetoelastic buckling[J].J Engrg Math,1987,21:227-252. doi: 10.1007/BF00127465
    [9] Tagaki T,Tani J,Matsubara Y,et al.Electromagneto-mechanical coupling effects for non-ferromagnetic and ferromagnetic structures[A].In:Miya K,Ed.Proc 2nd Internat Workshop on Electromagnetic Forces and Related Effects on Blankets and Other Structures Surrounding the Fission Plasma Torus[C].Japan:Tokai,1993,81-90.
    [10] ZHOU You-he, ZHENG Xiao-jing.A general expression of magnetic force for soft ferromagnetic plates in complex magnetic fields[J].Internat J Engrg Sci,1997,35(15):1405-1417. doi: 10.1016/S0020-7225(97)00051-7
    [11] ZHOU You-he,ZHENG Xiao-jing.A generalized variational principle and theoretical model for magnetoelastic interaction of ferromagnetic bodies[J].Science in China,Ser A,1999,42(6):618-626.
    [12] ZHENG Xiao-jing,ZHOU You-he,WANG Xing-zhe,et al.Bending and buckling of ferroelastic plates[J].ASCE J Eng Mech,1999,125(2):180-185. doi: 10.1061/(ASCE)0733-9399(1999)125:2(180)
    [13] Moon F C.Problems in magneto-solid mechanics[A].In:Mechanics Today[C].Vol 4 (A78-35706 14-70).New York:Pergamon Press,Inc,1978, 307-390.
    [14] WANG Xing-zhe,Lee J S, ZHENG Xiao-jing.Magneto-thermo-elastic instability of ferromagnetic plates in thermal and magnetic fields[J].Internat J Solids and Structures,2003,40(22):6125-6142. doi: 10.1016/S0020-7683(03)00297-X
    [15] Meirovitch L.Analytical Methods in Vibrations[M].New York:Macmillan,1967.
  • 加载中
计量
  • 文章访问数:  3320
  • HTML全文浏览量:  177
  • PDF下载量:  617
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-12-20
  • 修回日期:  2008-06-30
  • 刊出日期:  2008-08-15

目录

    /

    返回文章
    返回