留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

导电薄板的磁弹性组合共振分析

胡宇达 李晶

胡宇达, 李晶. 导电薄板的磁弹性组合共振分析[J]. 应用数学和力学, 2008, 29(8): 954-966.
引用本文: 胡宇达, 李晶. 导电薄板的磁弹性组合共振分析[J]. 应用数学和力学, 2008, 29(8): 954-966.
HU Yu-da, LI Jing. Magneto-Elastic Combination Resonances Analysis of Current-Conducting Thin Plate[J]. Applied Mathematics and Mechanics, 2008, 29(8): 954-966.
Citation: HU Yu-da, LI Jing. Magneto-Elastic Combination Resonances Analysis of Current-Conducting Thin Plate[J]. Applied Mathematics and Mechanics, 2008, 29(8): 954-966.

导电薄板的磁弹性组合共振分析

详细信息
    作者简介:

    胡宇达(1968- ),男,黑龙江人,教授,博士(联系人.Tel:+86-335-8074576;E-mail:huyuda03@163.com).

  • 中图分类号: O322:O442

Magneto-Elastic Combination Resonances Analysis of Current-Conducting Thin Plate

  • 摘要: 基于Mexwell方程,给出了导电薄板的非线性磁弹性振动方程、电动力学方程和电磁力表达式.在此基础上,研究了横向磁场中梁式导电薄板的磁弹性组合共振问题,应用Galerkin法导出了相应的非线性振动微分方程组.利用多尺度法进行求解,得到了系统稳态运动下的幅频响应方程,分析了组合共振激发的条件.根据Liapunov近似稳定性理论,对稳态解的稳定性进行了分析,得到了稳定性的判定条件.通过数值计算,给出了一、二阶模态下共振振幅随调谐参数、激励幅值和磁场强度的变化规律曲线图,以及系统振动的时程响应图、相图、Poincaré映射图和频谱图,进一步分析了电磁、机械等参量对解的稳定性及分岔特性的影响,并讨论了系统的倍周期和概周期等复杂动力学行为.
  • [1] Pao Y H, Yeh C S. A linear theory for soft ferromagnetic elastic bodies[J].International Journal of Engineering Science,1973,11(4):415-436. doi: 10.1016/0020-7225(73)90059-1
    [2] Moon F C, Pao Y H.Vibration and dynamic instability of a beam-plate in a transverse magnetic field[J].Journal of Applied Mechanics,1969,36(2):141-149. doi: 10.1115/1.3564576
    [3] Moon F C.Magneto-Solid Mechanics[M].New York: John Wiley and Sons,1984.
    [4] Lu Q S, To C W S, Huang K L.Dynamic stability and bifurcation of an alternating load and magnetic field excited magnetoelastic beam[J].Journal of Sound and Vibration,1995,181(5):873-891. doi: 10.1006/jsvi.1995.0175
    [5] Hai W, Duan Y, Pan X. An analytical study for controlling unstable periodic motion in magneto-elastic chaos[J].Physics Letter A,1997,234(3):198-204. doi: 10.1016/S0375-9601(97)00501-X
    [6] Thompson R C A, Mullin T. Routes to chaos in a magneto-elastic beam[J].Chaos Solitons and Fractals,1997,8(4):681-697. doi: 10.1016/S0960-0779(96)00113-0
    [7] Wu G Y. The analysis of dynamic instability on the large amplitude vibrations of a beam with transverse magnetic fields and thermal loads[J].Journal of Sound and Vibration,2007,302(1/2):167-177. doi: 10.1016/j.jsv.2006.11.012
    [8] Wang X Z, Lee J S, Zheng X J.Magneto-thermo-elastic instability of ferromagnetic plates in thermal and magnetic fields[J].International Journal of Solids and Structures,2003,40(22):6125-6142. doi: 10.1016/S0020-7683(03)00297-X
    [9] Амбарцумян С А, Багдасарян Г Е, Белубекян М В.Магнитоупругость Тонких Оболочек и Пластин[M].Москва: Наука, 1977.
    [10] Мольченко Л В.Магнитоупругость Нелинейных Токонесущих Оболочек[M].Киев: Выща Школа Наука,1989.
    [11] Hasanyan D J, Librescu L, Ambur D R. Bucking and postbuckling of magnetoelastic flat plates carrying an electric current[J].International Journal of Solids and Structures,2006,43(16):4971-4996. doi: 10.1016/j.ijsolstr.2005.04.028
    [12] Zheng X J, Zhang J P, Zhou Y H. Dynamic stability of a cantilever conductive plate in transverse impulsive magnetic field[J].International Journal of Solids and Structures,2005,42(8):2417-2430. doi: 10.1016/j.ijsolstr.2004.09.016
    [13] 胡宇达, 邱家俊,塔娜.压板松动时大型发电机端部绕组的主共振与分岔[J].应用数学和力学, 2005,26(4):465-473.
    [14] 胡宇达.传导薄板在磁场环境中的非线性磁弹性振动问题[J].工程力学,2001,18(4):89-94.
    [15] HU Yu-da, DU Guo-jun, LI Jing. Nonlinear magnetoelastic vibration analysis of current-conducting thin plate in magnetic field[A].In:CHIEN Wei-zang,Ed.Proceedings of Fifth International Conference on Nonlinear Mechanics[C].Shanghai:Shanghai University Press,2007, 631-636.
    [16] Nayfeh A H, Mook D T.Nonlinear Oscillations[M].New York:John Wiley & Sons, 1979.
    [17] 刘延柱,陈立群.非线性振动[M].北京:高等教育出版社,2001.
  • 加载中
计量
  • 文章访问数:  3218
  • HTML全文浏览量:  149
  • PDF下载量:  623
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-09-04
  • 修回日期:  2008-07-15
  • 刊出日期:  2008-08-15

目录

    /

    返回文章
    返回