留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流体饱和多孔隙介质波动方程小波有限差分法

贺英 韩波

贺英, 韩波. 流体饱和多孔隙介质波动方程小波有限差分法[J]. 应用数学和力学, 2008, 29(11): 1355-1346.
引用本文: 贺英, 韩波. 流体饱和多孔隙介质波动方程小波有限差分法[J]. 应用数学和力学, 2008, 29(11): 1355-1346.
HE Ying, HAN Bo. Wavelet Finite-Difference Method for the Numerical Simulation of Wave Propagation in Fluid-Saturated Porous Media[J]. Applied Mathematics and Mechanics, 2008, 29(11): 1355-1346.
Citation: HE Ying, HAN Bo. Wavelet Finite-Difference Method for the Numerical Simulation of Wave Propagation in Fluid-Saturated Porous Media[J]. Applied Mathematics and Mechanics, 2008, 29(11): 1355-1346.

流体饱和多孔隙介质波动方程小波有限差分法

基金项目: 国家自然科学基金资助项目(40774056)
详细信息
    作者简介:

    贺英(1978- ),女,黑龙江哈尔滨人,博士生(联系人.Tel:+86-451-86401135;E-mail:happy-birdzhp@sohu.com).

  • 中图分类号: O175.2;O357

Wavelet Finite-Difference Method for the Numerical Simulation of Wave Propagation in Fluid-Saturated Porous Media

  • 摘要: 研究流体饱和多孔隙介质中波动方程的数值模拟.针对求解二维弹性波方程问题,提出小波有限差分法.该方法综合了小波多分辨分析计算灵活、计算效率高特性和有限差分易于实现的优点.数值模拟的结果显示,此方法对于求解流体饱和多孔隙介质方程的数值模拟是有效稳定的.
  • [1] Biot M A.Theory of propagation of elastic waves in a fluid-saturated porous solid: low-frequency range[J].Acoustical Society of America,1956,28(2):168-178. doi: 10.1121/1.1908239
    [2] Biot M A.Theory of propagation of elastic waves in a fluid-saturated porous solid: higher-frequency range[J].Acoustical Society of America,1956,28(2):168-178. doi: 10.1121/1.1908239
    [3] Dai N,Vafidis A,Kanasewich E R.Wave propagation in heterogeneous,porous media:A velocity-stress,finite-difference method[J].Geophysics,1995,60(2):327-340. doi: 10.1190/1.1443769
    [4] Prevost J H. Wave propagation in fluid-saturated porous media: an efficient finite element procedure[J].Soil Dynamics and Earthquake Engineering,1985,4(4):183-202. doi: 10.1016/0261-7277(85)90038-5
    [5] Narasimhan T N,Witherspoon P A.An integrated finite difference method for analyzing fluid flow in porous media[J].Water Resources Research,1976,12(1):57-64. doi: 10.1029/WR012i001p00057
    [6] Pedercini M,Patera A T,Cruz M E.Variational bound finite element methods for three-dimensional creeping porous media and sedimentation flows[J].International Journal for Numerical Methods in Fluids,1998,26(2):145-175. doi: 10.1002/(SICI)1097-0363(19980130)26:2<145::AID-FLD617>3.0.CO;2-O
    [7] 邵秀民,蓝志凌. 流体饱和多孔介质波动方程的有限元解法[J]. 地球物理学报.2000,43(2):264-277.
    [8] SUN Wei-tao,YANG Hui-zhu.Elastic wavefield calculation for heterogeneous anisotropic porous media using the 3D irregular-grid finite-difference[J].Acta Mechanica Solida Sinica,2003,16(4):283-299.
    [9] Hong T K,Kennett B L N. A wavelet-based method for simulation of two-dimensional elastic wave propagation[J].Geophysical Journal International,2002,150(3):610-638. doi: 10.1046/j.1365-246X.2002.01714.x
    [10] Mustafa M T,Siddiqui A A. Wavelet optimized finite difference method with non-static regridding[J].Applied Mathematics and Computation,2007,18(6):203-211.
    [11] Xiang J W,Chen X F,He Z J,et al. The construction of 1D wavelet finite elements for structural analysis[J].Computational Mechanics,2007,40(2):325-339. doi: 10.1007/s00466-006-0102-5
    [12] 张新明,刘克安,刘家琦.流体饱和多孔隙介质二维弹性波方程正演模拟的小波有限元法[J].地球物理学报,2005,48(5):1156-1166.
    [13] LIAO Zhen-peng,Wong H L,YANG Bai-po,et al. A transmitting boundary for transient wave analyses[J].Scientia Sinica,A,1984,27(10):1063-1076.
    [14] LIAO Zhen-peng,Wong H L.A transmitting boundary for the numerical simulation of elastic wave propagation[J].Soil Dynamics and Earthquake Engineering,1984,3(4):174-183. doi: 10.1016/0261-7277(84)90033-0
    [15] Beylkin G. On the representation of operators in bases of compactly supported wavelets[J].SIAM Numerical Analysis,1992,29(1):1716-1740. doi: 10.1137/0729097
    [16] Hajji M A,Melkonian S,Vaillancourt V.Representation of differential opterator in wavelet basis[J].Computers and Mathematics with Applications,2004,47(6):1011-1033. doi: 10.1016/S0898-1221(04)90083-1
    [17] Kelly K R,Ward R W,Treitel S,et al.Synthetic seismograms: a finite-difference approach[J].Geophysies,1976,41(1):2-27.
  • 加载中
计量
  • 文章访问数:  2923
  • HTML全文浏览量:  144
  • PDF下载量:  776
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-03-20
  • 修回日期:  2008-09-23
  • 刊出日期:  2008-11-15

目录

    /

    返回文章
    返回