留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Banach空间内涉及H-η-单调算子的集值混合拟似变分包含组

丁协平 王中宝

丁协平, 王中宝. Banach空间内涉及H-η-单调算子的集值混合拟似变分包含组[J]. 应用数学和力学, 2009, 30(1): 1-14.
引用本文: 丁协平, 王中宝. Banach空间内涉及H-η-单调算子的集值混合拟似变分包含组[J]. 应用数学和力学, 2009, 30(1): 1-14.
DING Xie-ping, WANG Zhong-bao. System of Set-Valued Mixed Quasi-Variational-Like Inclusions Involving H-eta-Monotone Operators in Banach Spaces[J]. Applied Mathematics and Mechanics, 2009, 30(1): 1-14.
Citation: DING Xie-ping, WANG Zhong-bao. System of Set-Valued Mixed Quasi-Variational-Like Inclusions Involving H-eta-Monotone Operators in Banach Spaces[J]. Applied Mathematics and Mechanics, 2009, 30(1): 1-14.

Banach空间内涉及H-η-单调算子的集值混合拟似变分包含组

基金项目: 四川省教育厅重点科研基金资助项目(07ZA092SZD0406)
详细信息
    作者简介:

    丁协平(1938- ),男,自贡人,教授(联系人.Tel:+86-28-84780952;E-mail:xiepingding@hotmail.com);王中宝(1982- ),男,绵阳人,硕士.

  • 中图分类号: 225;189.11

System of Set-Valued Mixed Quasi-Variational-Like Inclusions Involving H-eta-Monotone Operators in Banach Spaces

  • 摘要: 在没有光滑性的一般Banach空间内引入和研究了涉及H-η-单调算子的集值混合拟似变分包含组(SSMQVLI).利用与H-η-单调算子相联系的预解算子技巧,建议和分析了一类寻求SSMQVLI的近似解的新的迭代算法.在适当假设下,证明了由算法生成的迭代序列强收敛于SSMQVLI的精确解.这些结果是新的,改进和推广了这一领域的相应结果.
  • [1] Browder F E.Fixed point theory and Nonlinear problems[A].In:Browder F E Ed.Proc Symp Pure Math[C].39.Providence,Rhode Island:American Math Soc,1980,49-87.
    [2] Gorniewicz L.Topoligical Fixed Point Theory of Multivalued Mapping[M].Berlin:Springer-Verlag,2006.
    [3] Ding X P,Lou C L.Perturbed proximal point algorithm for generalized quasi-variational-like inclusions[J].J Comput Appl Math,2000,113(1/2):153-165. doi: 10.1016/S0377-0427(99)00250-2
    [4] Huang N J,Fang Y P.A new class of generalized variational inclusions involving maximal η[KG5]. -monotone mappings[J].Publ Math Debrecen,2003,62(1/2):83-98.
    [5] Fang Y P,Huang N J.H-monotone operator and resolvent operator technique for variational inclusions[J]. Appl Math Comput,2003,145(2/3):795-803. doi: 10.1016/S0096-3003(03)00275-3
    [6] Fang Y P,Huang N J,Thompson H B.A new system of variational inclusions with (H,η)-monotone operators in Hilbert spaces[J].Comput Math Appl,2005,49(2/3):365-374. doi: 10.1016/j.camwa.2004.04.037
    [7] Verma R U.Generalized nonlinear variational inclusion problems involving A-monotone mappings[J].Appl Math Lett,2006,19(9):960-963. doi: 10.1016/j.aml.2005.11.010
    [8] Verma R U.Sensitivity analysis for generalized strongly monotone variational inclusions based on the (A,η)-resolvent operator technique[J].Appl Math Lett,2006,19(12):1409-1413. doi: 10.1016/j.aml.2006.02.014
    [9] Zhang Q B.Generalized implicit variational-like inclusion problems involving G[KG5]. -η[KG5]. -monotone mappings[J].Appl Math Lett,2007,20(2):216-221.
    [10] Lou J,He X F,He Z.Iterative methods for solving a system of variational inclusions involving H-η[KG5]. -monotone operators in Banach spaces[J].Comput Math Appl,2008,55(7):1532-1541.
    [11] Feng H R,Ding X P.A new system of generalized nonlinear quasi-variational-like inclusions with A-monotone operators in Banach spaces[J].J Comput Appl Math.DOI: 10.1016/j.cam.2008.07.048.
    [12] Lan H Y,Cho Y J,Verma R U.Nonlinear relaxed cocoercive variational inclusions involving (A,η)-accretive mappings in Banach spaces[J].Comput Math Appl,2006,51(9/10):1529-1538. doi: 10.1016/j.camwa.2005.11.036
    [13] Lan H Y.(A,η)-accretive mappings and set-valued variational inclusions with relaxed cocoercive mappings in Banach spaces[J].Appl Math Lett,2007,20(5):571-577. doi: 10.1016/j.aml.2006.04.025
    [14] Peng J W.On a new system of generalized mixed quasi-variational-like inclusions with (H,η)-accretive operators in real q[KG*5]. -uniformly smooth Banach spaces[J].Nonlinear Anal,2008,68(4):981-993.
    [15] Peng J W.Set-valued variational inclusions with T-accretive operators in Banach spaces[J].Appl Math Lett,2006,19(3):273-282 . doi: 10.1016/j.aml.2005.04.009
    [16] Peng J W,Zhu D L.A new system of generalized mixed quasi-vatiational inclusions with (H,η)-monotone operators[J].J Math Anal Appl,2007,327(10):175-187. doi: 10.1016/j.jmaa.2006.04.015
    [17] Fang Y P,Huang N J.H-monotone operators and system of variational inclusions[J].Common Appl Nonlinear Anal,2004,11(1):93-101.
    [18] Lan H Y,Kim J H,Cho Y J.On a new system of nonlinear A-monotone multivalued variational inclusions[J].J Math Anal Appl,2007,327(1):481-493. doi: 10.1016/j.jmaa.2005.11.067
    [19] Verma R U.General system of (A,η)-monotone variational inclusion problems based on generalized hybrid iterative algorithm[J].Nonlinear Analysis:Hybrid Systems,2007,1(3):326-335. doi: 10.1016/j.nahs.2006.07.002
    [20] Lan H Y.New Proximal algorithms for a class of (A,η)-accretive variational inclusion problems with non-accretive set-valued mapping[J].J Appl Math Comput,2007,25(1/2) 255-267.
    [21] Yan W Y,Fang Y P,Huang N J.A new system of set-valued variational inclusions with H-monotone operators[J]. Math Inequal Appl,2005,8(3):537-546.
    [22] Cho Y J,Fang Y P,Huang N J.Algorithms for systems of nonlinear variational inequalities[J]. J Korean Math Soc,2004,41(2):489-499. doi: 10.4134/JKMS.2004.41.3.489
    [23] Kazmi K R,Khan F A.Iterative approximation of a solution of multi-valued variational-like inclusion in Banach spaces:A P-η[KG5]. -proximal-point mapping approach[J]. J Math Anal Appl,2007,325(1):665-674.
    [24] Ding X P.Perturbed Ishikawa type iterative algorithm for generalized quasivariational inclusions[J].Appl Math Comput,2003,141(2/3):359-373. doi: 10.1016/S0096-3003(02)00261-8
    [25] Ding X P,Feng H R.The p-step iterative algorithm for a system of generalized mixed quasi-variational inclusions with (A,η)-accretive operators in q-uniformly smooth banach spaces[J].J Comput Appl Math,2008,220(1/2):163-174. doi: 10.1016/j.cam.2007.08.003
    [26] Kazmi K P,Khan F A.Iterative approximation of a unique solution of a system of vatiational-like inclusions in real q- uniformly smooth Banach spaces[J].Nonlinear Anal,2007,67(3):917-929. doi: 10.1016/j.na.2006.06.049
    [27] Peng J W,Zhu D L.Three-step iterative algorithm for a system of set-valued variational inclusions with (H,η)-monotone operators[J].Nonlinear Anal,2008,68(1):139-153. doi: 10.1016/j.na.2006.10.037
    [28] Zeng L C. An iterative method for generalized nonlinear set-valued mixed quasi-variational inequalities with H-monotone mappings[J].Comput Math Appl,2007,54(4):476-483. doi: 10.1016/j.camwa.2007.01.025
    [29] Ding X P,Yao J C,Existence and algorithm of solutions for mixed quasi-variationallike inclusions in Banach spaces[J].Comput Math Appl,2005,49(5/6):857-869.
    [30] Schaible S,Yao J C,Zeng L C.A proximal method for pseudomonotone type variational-like inequalities[J].Taiwanese Journal of Mathematics,2006,10(2):497-513.
    [31] Zeng L C,Guu S M,Yao J C.Three-step iterative algorithms for solving the system of generalized mixed quasi-variational-like inclusions[J].Comput Math Appl,2007,53(10):1572-1581. doi: 10.1016/j.camwa.2006.05.024
    [32] Zeng L C,Wu S Y,Yao J C.New accuracy criteria for modified approximate proximal point algorithms in Hilbert space[J].Taiwanese Journal of Mathematics,2008,12(4):1691-1705.
    [33] Zeng L C,Yao J C.Mixed projection methods for systems of variational inequalities[J].Journal of Global Optimization,2008,41(3):465-478. doi: 10.1007/s10898-007-9258-6
    [34] Ding X P,Yao J C,Zeng L C.Existence and algorithm of solutions for generalized strongly nonlinear mixed variational-like inequalities in Banach spaces[J].Comput Math Appl,2008,55(4):669-679. doi: 10.1016/j.camwa.2007.06.004
    [35] Petryshyn W V.A characterization of strict convexity of Banach spaces and other uses of duality mappings[J].J Funct Anal,1970,6(2):282-291. doi: 10.1016/0022-1236(70)90061-3
    [36] Nadler S B.Multivalued contraction mapping[J].Pacific J Math,1969,30(2):475-488.
  • 加载中
计量
  • 文章访问数:  2620
  • HTML全文浏览量:  141
  • PDF下载量:  810
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-08-18
  • 修回日期:  2008-12-02
  • 刊出日期:  2009-01-15

目录

    /

    返回文章
    返回