留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广义KdV方程Fourier谱逼近的最优误差估计

邓镇国 马和平

邓镇国, 马和平. 广义KdV方程Fourier谱逼近的最优误差估计[J]. 应用数学和力学, 2009, 30(1): 30-39.
引用本文: 邓镇国, 马和平. 广义KdV方程Fourier谱逼近的最优误差估计[J]. 应用数学和力学, 2009, 30(1): 30-39.
DENG Zhen-guo, MA He-ping. Optimal Error Estimates for Fourier Spectral Approxiation of the Generalized KdV Equation[J]. Applied Mathematics and Mechanics, 2009, 30(1): 30-39.
Citation: DENG Zhen-guo, MA He-ping. Optimal Error Estimates for Fourier Spectral Approxiation of the Generalized KdV Equation[J]. Applied Mathematics and Mechanics, 2009, 30(1): 30-39.

广义KdV方程Fourier谱逼近的最优误差估计

基金项目: 国家自然科学基金资助项目(60874039);上海市重点学科建设资助项目(J50101)
详细信息
    作者简介:

    邓镇国(1978- ),男,广东人,博士(E-mail:zhgdeng@gmail.com);马和平,教授,博士,博士生导师(联系人.E-mail:hpma@shu.edu.cn).

  • 中图分类号: O241.82

Optimal Error Estimates for Fourier Spectral Approxiation of the Generalized KdV Equation

  • 摘要: 分析了一类带周期边界条件的广义KdV方程Fourier谱方法,得到了L2范数下最优误差估计,改进了由Maday和Quarteroni给出的结果.还提出了一种修改Fourier拟谱方法,并且证明它享有与Fourier谱方法同样的收敛性.
  • [1] Abe K,Inoue O.Fourier expansion solution of the KdV equation[J].J Computational Physics,1980, 34(2):202-210. doi: 10.1016/0021-9991(80)90105-9
    [2] Fornberg B,Whitham G B. A numerical and theoretical study of certain nonlinear phenomena[J].Phil Trans Roy Soc London Ser A,1978,289(1361):373-404. doi: 10.1098/rsta.1978.0064
    [3] Chan T F,Kerkhoven T. Fourier methods with extended stability intervals for the Korteweg-de Vries equation[J].SIAM J Numerical Analysis,1985,22(3):441-454. doi: 10.1137/0722026
    [4] Ma H P,Guo B Y. The Fourier pseudospectral method with a restrain operator for the Korteweg-de Vries equation[J].J Computational Physics,1986,65(1):120-137. doi: 10.1016/0021-9991(86)90007-0
    [5] Maday Y,Quarteroni A. Error analysis for spectral approximation of the Korteweg-de Vries equation[J].RAIRO Modélisation Mathématique et Analyse Numérique,1988,22(3):499-529.
    [6] Kalisch H. Rapid convergence of a Galerkin projection of the KdV equation[J].Comptes Rendus Mathematique,2005,341(7):457-460. doi: 10.1016/j.crma.2005.09.006
    [7] Bjrkav[KG-*4]. ag M,Kalisch H. Exponential convergence of a spectral projection of the KdV equation[J].Physics Letters A,2007,365(4):278-283. doi: 10.1016/j.physleta.2006.12.085
    [8] Kreiss H O,Oliger J. Stability of the Fourier method[J].SIAM J Numerical Analysis,1979,16(3):421-433. doi: 10.1137/0716035
    [9] Adams R A.Sobolev Spaces[M]. New York:Academic Press,1975.
    [10] Ma M P,Sun W W. Optimal error estimates of the Legendre-Petrov-Galerkin method for the Korteweg-de Vries equation[J].SIAM J Numerical Analysis,2001,39(4):1380-1394. doi: 10.1137/S0036142900378327
    [11] Wahlbin Lars B. A dissipative Galerkin method for the numerical solution of first order hyperbolic equations[A].In:de Boor C,Ed.Mathematical Aspects of Finite Elements in Partial Differential Equations[C].New York:Academic Press,1974,147-169.
  • 加载中
计量
  • 文章访问数:  3104
  • HTML全文浏览量:  191
  • PDF下载量:  725
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-03-05
  • 修回日期:  2008-11-28
  • 刊出日期:  2009-01-15

目录

    /

    返回文章
    返回