留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁-微极广义热弹性介质中轴对称变形的弹性动力学

R·库玛 鲁班德

R·库玛, 鲁班德. 磁-微极广义热弹性介质中轴对称变形的弹性动力学[J]. 应用数学和力学, 2009, 30(1): 40-50.
引用本文: R·库玛, 鲁班德. 磁-微极广义热弹性介质中轴对称变形的弹性动力学[J]. 应用数学和力学, 2009, 30(1): 40-50.
Rajneesh Kumar, Rupender. Elastodynamics of Axi-Symmetric Deformation in Magneto-Micropolar Generalized Thermoelastic Medium[J]. Applied Mathematics and Mechanics, 2009, 30(1): 40-50.
Citation: Rajneesh Kumar, Rupender. Elastodynamics of Axi-Symmetric Deformation in Magneto-Micropolar Generalized Thermoelastic Medium[J]. Applied Mathematics and Mechanics, 2009, 30(1): 40-50.

磁-微极广义热弹性介质中轴对称变形的弹性动力学

详细信息
  • 中图分类号: O343.6

Elastodynamics of Axi-Symmetric Deformation in Magneto-Micropolar Generalized Thermoelastic Medium

  • 摘要: 在横向磁场中,表面受机械源或热源作用时,研究电磁-微极热弹性半空间中的轴对称问题.问题的求解用到了Laplace和Hankel变换技术.作为该方法的一个应用,采用了集中源/沿圆周分布作用源(机械源和热源).对积分变换的逆变换使用数值技术,得到物理域中的应力分量和温度分布,以及感应电场和感应电磁场.对于两种不同的广义热弹性理论(Lord-Shulman(L-S)理论和Green-Lindsay(G-L)理论),给出了这些物理量的表达式,并用插图显示磁场的影响.还导出了一个感兴趣的特例.
  • [1] Eringen A C. Linear theory of micropolar elasticity[J].J Math Mech, 1966,15(6):909-923.
    [2] Eringen A C. Theory of micropolar fluids[J].J Math Mech,1966,15(1):1-18.
    [3] Eringen A C. Nonlocal polar field theories[A]. In:Eringen A C, Ed.Continuum Physics[C]. Vol 4.New York:Academic Press, 1976, 205-267.
    [4] Lord H W, Shulman Y. A generalized dynamical theory of thermoelasticity[J].J Mech Phys Solid,1967,15(5):299-309. doi: 10.1016/0022-5096(67)90024-5
    [5] Muller I M. The coldness, a universal function in thermoelastic bodies[J].Arch Ration Mech Anal,1971,41(5):319-332.
    [6] Green A E, Laws N. On the entropy production inequality[J].Arch Ration Mech Anal,1972,45(1):47-53.
    [7] Green A E, Lindsay K A. Thermoelasticity[J].Elasticity,1972,2(1):1-7. doi: 10.1007/BF00045689
    [8] Suhubi E S. Thermoelastic solids[A].Part 2, Chapter 2. In:Eringen A C Ed.Continuum Physics[C]. Vol 2.New York:Academic Press, 1975.
    [9] Kaliski S. Thermo-magneto-microelasticity[J].Bull Acad Polon Sci Sr Sci Tech,1968,16(1):7-12.
    [10] Nowacki W. Some problems of micropolar magneto-elasticity[J].Proc Vibr Probl,1971,12:105-203.
    [11] Kumar R, Choudhary S. Axi-symmetric problem in time harmonic sources in micropolar elastic medium[J].Ind J Pure and Appl Math,2002,33:1169-1182.
    [12] Kumar R, Deswal S.Axi-symmetric problem in a generalized micropolar thermoelastic half-space[J].Internat J Appl Mech and Eng,2007,12(2):413-429.
    [13] Honig G, Hirdes U. A method for the numerical inversion of Laplace transform[J]. Comput and Appl Math,1984,10(1):113-132. doi: 10.1016/0377-0427(84)90075-X
    [14] Press W H, Teukolshy S A, Vellerling W T,et al.Numerical Recipes in FORTRAN[M].2nd Ed. Cambridge:Cambridge University Press, 1986.
    [15] Eringen A C.Plane wave in nonlocal micropolar elasticity[J].Internat J Eng Sci, 1984,22(8/10):1113-1121. doi: 10.1016/0020-7225(84)90112-5
  • 加载中
计量
  • 文章访问数:  3003
  • HTML全文浏览量:  189
  • PDF下载量:  573
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-04-10
  • 修回日期:  2008-10-15
  • 刊出日期:  2009-01-15

目录

    /

    返回文章
    返回