留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

局部FC-一致空间内的广义矢量拟变分包含组和广义矢量拟优化问题组

丁协平

丁协平. 局部FC-一致空间内的广义矢量拟变分包含组和广义矢量拟优化问题组[J]. 应用数学和力学, 2009, 30(3): 253-264.
引用本文: 丁协平. 局部FC-一致空间内的广义矢量拟变分包含组和广义矢量拟优化问题组[J]. 应用数学和力学, 2009, 30(3): 253-264.
DING Xie-ping. Systems of Generalized Vector Quasi-Variational Inclusions and Systems of Generalized Vector Quasi-Optimization Problems in Locally FC-Uniform Spaces[J]. Applied Mathematics and Mechanics, 2009, 30(3): 253-264.
Citation: DING Xie-ping. Systems of Generalized Vector Quasi-Variational Inclusions and Systems of Generalized Vector Quasi-Optimization Problems in Locally FC-Uniform Spaces[J]. Applied Mathematics and Mechanics, 2009, 30(3): 253-264.

局部FC-一致空间内的广义矢量拟变分包含组和广义矢量拟优化问题组

基金项目: 四川省教育厅重点科研基金资助项目(07ZA092SZD0406)
详细信息
    作者简介:

    丁协平(1938- ),男,四川自贡人,教授(Tel:+86-28-84780952;E-mail:xieping_ding@hotmail.com).

  • 中图分类号: O176.3;O177.92

Systems of Generalized Vector Quasi-Variational Inclusions and Systems of Generalized Vector Quasi-Optimization Problems in Locally FC-Uniform Spaces

  • 摘要: 在没有凸性结构的局部FC-一致空间内,引入和研究了某些新的广义矢量拟变分包含问题组和广义矢量理想(真,帕雷多(Pareto),弱)拟优化问题组.应用KKM型定理和Himmelberg型不动点定理,首先对广义矢量拟变分包含问题组的解,证明了某些新的存在性定理.作为应用,对广义矢量理想(真,帕雷多,弱)拟优化问题组的解也得到了某些新的存在性结果.
  • [1] Lin L J, Tan N X. On quasivariational inclusions of type I and related problems[J].J Glob Optim,2007,39(3):393-407. doi: 10.1007/s10898-007-9143-3
    [2] Hai N X, Khanh P Q. Existence of solutions to general quasiequilibrium problems and applications[J].J Optim Theory Appl,2007,133(3):317-327. doi: 10.1007/s10957-007-9170-8
    [3] Hai N X, Khanh P Q. The solution existence of general variational inclusion problems[J].J Math Anal Appl,2007,328(2):1268-1277. doi: 10.1016/j.jmaa.2006.06.058
    [4] Hai N X, Khanh P Q. Systems of set-valued quasivariational inclusion problems[J].J Optim Theory Appl,2007,135(1):55-67. doi: 10.1007/s10957-007-9222-0
    [5] Lin L J, Shie H J. Existence theorems of quasivariational inclusion problems with applications to bilevel problems and mathem atical programs with equilibrium constraint[J].J Optim Theory Appl,2008,138(3):445-457. doi: 10.1007/s10957-008-9385-3
    [6] Lin L J.Systems of generalized quasivariational inclusion problems with applications to variational analysis and optimization problems[J].J Glob Optim,2007,38(1):21-39. doi: 10.1007/s10898-006-9081-5
    [7] Lin L J, Wang S Y, Chuang C S. Existence theorems of systems of variational inclusion problems with applications[J].J Glob Optim,2008,40(4):751-764. doi: 10.1007/s10898-007-9160-2
    [8] 丁协平,黎进三,姚任之.局部FC-一致空间内的广义约束多目标对策[J].应用数学和力学,2008,29(3):272-280.
    [9] DING Xie-ping, Liou Y C, Yao J C. Generalized R-KKM type theorems in topological spaces with applications[J].Appl Math Lett,2005,18(12):1345-1350. doi: 10.1016/j.aml.2005.02.022
    [10] DING Xie-ping. Generalized game and system of generalized vector quasi-equilibrium problems in locally FC-uniform spaces[J].Nonlinear Anal,2008,68(4):1028-1036. doi: 10.1016/j.na.2006.12.003
    [11] Luc D T.Theory of Vector Optimization[M].Lectures Notes in Economics and Mathematical Systems.319.Berlin, Germany:Springer Verlag,1989.
    [12] Ben-El-Mechaiekh H, Chebbi S, Flornzano M, et al. Abstract convexity and fixed points[J].J Math Anal Appl,1998,222(1):138-150. doi: 10.1006/jmaa.1998.5918
    [13] DING Xie-ping. Maximal element theorems in product FC-spaces and generalized games[J].J Math Anal Appl,2005,305(1):29-42. doi: 10.1016/j.jmaa.2004.10.060
    [14] Horvath C D. Contractibility and generalized convexity[J].J Math Anal Appl,1991,156(2):341-357. doi: 10.1016/0022-247X(91)90402-L
    [15] Park S, Kim H. Foundations of the KKM theory on generalized convex spaces[J].J Math Anal Appl,1997,209(2):551-571. doi: 10.1006/jmaa.1997.5388
    [16] 丁协平.局部FC-一致空间内凝聚映象的极大元和广义对策及应用(Ⅰ)[J].应用数学和力学,2007, 28(12):1392-1399.
    [17] DING Xie-ping. Minimax inequalities and fixed points of expansive set-valued mappings with noncompact and nonconvex domains and ranges in topological spaces[J].Nonlinear Anal.DOI: 10.1016/j.na.2008.01.018.
    [18] Kelly J L.General Topology[M].Princeton N J:Van Nostrand,1955.
    [19] Kthe G.Topological Vector Spaces Ⅰ[M].Berlin, New York:Springer-Verlag, 1983.
    [20] 丁协平.局部FC-一致空间内凝聚映象的极大元和广义对策及应用(Ⅱ)[J].应用数学和力学,2007,28(12):1400-1410.
    [21] Tarafdar E. Fixed point theorems in locally H-convex uniform spaces[J].Nonlinear Anal,1997,29(9):971-978. doi: 10.1016/S0362-546X(96)00174-5
    [22] Park S. Fixed point theorems in locally G-convex spaces[J].Nonlinear Anal,2002,48(6):869-879. doi: 10.1016/S0362-546X(00)00220-0
    [23] DING Xie-ping. generalizations of Himmelberg type fixed point theorems in locally FC-spaces[J].J Sichuan Normal Univ(NS),2006,29(1):1-6.
    [24] DING Xie-ping. System of generalized vector quasi-equilibrium problems in locally FC-spaces[J].Acta Math Sinica,2006,22(5):1529-1538. doi: 10.1007/s10114-005-0671-9
    [25] DING Xie-ping. Weak Pareto equilibria for generalized constrained multiobjective games in locally FC-spaces[J].Nonlinear Anal,2006,65(3):538-545. doi: 10.1016/j.na.2005.09.029
    [26] Aubin J P, Ekeland I.Applied Nonlinear Analysis[M].New York:Wiley,1984.
    [27] Aliprantis C D, Border K C.Infinite Dimensional Analysis[M].New York:Springer-Verlag,1994.
    [28] Fan K. Fixed-points and minimax theorems in locally convex topological linear spaces[J].Proc Nat Acad Sci USA,1952,38(1):131-136.
  • 加载中
计量
  • 文章访问数:  2946
  • HTML全文浏览量:  154
  • PDF下载量:  720
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-09-24
  • 修回日期:  2009-01-21
  • 刊出日期:  2009-03-15

目录

    /

    返回文章
    返回