留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维无限接合体双材料多界面裂纹的超奇异微积分方程法

徐春晖 秦太验 袁丽 野田尚昭

徐春晖, 秦太验, 袁丽, 野田尚昭. 三维无限接合体双材料多界面裂纹的超奇异微积分方程法[J]. 应用数学和力学, 2009, 30(3): 282-290.
引用本文: 徐春晖, 秦太验, 袁丽, 野田尚昭. 三维无限接合体双材料多界面裂纹的超奇异微积分方程法[J]. 应用数学和力学, 2009, 30(3): 282-290.
XU Chun-hui, QIN Tai-yan, YUAN Li, Noda Nao-Aki. Analysis of Multiple Interfacial Cracks in Three Dimensional Bimaterials Using Hypersingular Integral-Differential Equation Method[J]. Applied Mathematics and Mechanics, 2009, 30(3): 282-290.
Citation: XU Chun-hui, QIN Tai-yan, YUAN Li, Noda Nao-Aki. Analysis of Multiple Interfacial Cracks in Three Dimensional Bimaterials Using Hypersingular Integral-Differential Equation Method[J]. Applied Mathematics and Mechanics, 2009, 30(3): 282-290.

三维无限接合体双材料多界面裂纹的超奇异微积分方程法

基金项目: 国家自然科学基金资助项目(10872213)
详细信息
    作者简介:

    徐春晖(1971- ),女,辽宁人,副教授,博士(联系人.Tel:+86-10-62736992;E-mail:xuchunhui_cau@163.com).

  • 中图分类号: O346.1

Analysis of Multiple Interfacial Cracks in Three Dimensional Bimaterials Using Hypersingular Integral-Differential Equation Method

  • 摘要: 利用有限部积分的概念,导出了三维无限接合体中多个界面裂纹,在任意载荷作用下的超奇异微积分方程组.数值分析中,未知的位移间断采用基本分布函数和多项式乘积的形式来近似,其中基本分布函数是根据界面裂纹应力的振荡奇异性来选取的.作为典型算例,研究了存在两个矩形界面裂纹时,裂纹之间距离、裂纹形状及双材料弹性常数对应力强度因子的影响.计算表明,应力强度因子随裂纹间的距离的增大而减小.
  • [1] 王银邦,张晋兰.两个共面矩形裂纹的边界元分析[J]. 兰州大学学报,1995,31(4):50-54.
    [2] 秦太验,乐今朝,汤任基. 三维无限体中两平行平片裂纹相互干扰的超奇异积分方程解法[J]. 固体力学学报,1995,16(1):41-47.
    [3] Zhou Z G, Wang B. The behavior of two parallel symmetry permeable interface cracks in a piezoelectric layer bonded to two half piezoelectric materials planes[J].Internat J Solids and Structures,2002,39(17):4485-4500. doi: 10.1016/S0020-7683(02)00347-5
    [4] Isida M, Hirota K. Two parallel elliptical cracks in an infinite solid subjected to tension[J].Internat J Fracture,1985,27(1):31-48. doi: 10.1007/BF00017211
    [5] Shi G C, Song Z F. Magnetic and electric poling effects associated with crack growth in BaTiO3CoFe2O4 composite[J].Theoret Appl Fracture Mech,2003,39(3):209-227. doi: 10.1016/S0167-8442(03)00003-X
    [6] 刘又文,方棋洪,蒋持平.压电螺位错与含界面裂纹圆形涂层夹杂的干涉[J].力学学报,2006,38(2):185-190.
    [7] 朱伯靖,秦太验. 磁电热弹耦合材料三维多裂纹超奇异积分法[J].力学学报,2008,40(1):46-58.
    [8] Rice J R, Sih G C. Plane problems of cracks in dissimilar media[J].Trans ASME,Ser E, J Appl Mech,1965,32(3): 418-423. doi: 10.1115/1.3625816
    [9] Chen H, Wang L M, Karihaloo B L. Fracture analysis for multi-material system with an interface crack[J].Comput Meter Sci,1998,12(1):1-8. doi: 10.1016/S0927-0256(98)00014-7
    [10] Nagai M, Ikeda T, Miyazaki N. Stress intensity factor analysis of a three dimensional interface crack[J].Engng Fracture Mech,2007,74(16):2481-2497. doi: 10.1016/j.engfracmech.2006.12.027
    [11] Noda N A, Oda K. Interaction effect of stress intensity factors for any number of collinear interface cracks[J].Internat J Fracture,1997,84(2):117-128. doi: 10.1023/A:1007313200779
    [12] Sun Y Z, Zhang Z, Kitipornchai S,et al.Analyzing the interaction between collinear interfacial cracks by an efficient boundary element free method[J].Internat J Engng Sci,2006,44(1/2):37-48. doi: 10.1016/j.ijengsci.2005.08.005
    [13] Zhou Z G, Zhang P W, Wu L Z. Two parallel limited-permeable mode-I cracks or four parallel limited-permeable mode-I cracks in the piezoelectric materials[J].Internat J Solids and Structure,2007,44(11/12): 4184-4205. doi: 10.1016/j.ijsolstr.2006.11.019
    [14] Noda N A, Xu C H. Controlling parameter of the stress intensity factors for a planar interfacial crack in three-dimensional bimaterials[J].Internat J Solids and Structures,2008,45(3/4): 1017-1031. doi: 10.1016/j.ijsolstr.2007.09.013
    [15] 徐春晖,野田尚昭,高濑康.せん断荷重下における[FJF]. 种[FJ]. 接合半[FJF]. 无[FJ]. 限体中の界面き裂の力大数の解析[J].日本械学会论文集,2007,73(731):768-774.
  • 加载中
计量
  • 文章访问数:  3644
  • HTML全文浏览量:  171
  • PDF下载量:  621
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-09-28
  • 修回日期:  2009-02-06
  • 刊出日期:  2009-03-15

目录

    /

    返回文章
    返回