留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黏性流体与热弹性微极蜂窝结构介质界面上受倾斜荷载作用时的弹性动力分析

R·库玛 R·R·古泊塔

R·库玛, R·R·古泊塔. 黏性流体与热弹性微极蜂窝结构介质界面上受倾斜荷载作用时的弹性动力分析[J]. 应用数学和力学, 2009, 30(3): 333-344.
引用本文: R·库玛, R·R·古泊塔. 黏性流体与热弹性微极蜂窝结构介质界面上受倾斜荷载作用时的弹性动力分析[J]. 应用数学和力学, 2009, 30(3): 333-344.
Rajneesh Kumar, Rajani Rani Gupta. Elastodynamic Analysis at an Interface of Viscous Fluid/Thermoelastic Micropolar Honeycomb Medium due to Inclined Load[J]. Applied Mathematics and Mechanics, 2009, 30(3): 333-344.
Citation: Rajneesh Kumar, Rajani Rani Gupta. Elastodynamic Analysis at an Interface of Viscous Fluid/Thermoelastic Micropolar Honeycomb Medium due to Inclined Load[J]. Applied Mathematics and Mechanics, 2009, 30(3): 333-344.

黏性流体与热弹性微极蜂窝结构介质界面上受倾斜荷载作用时的弹性动力分析

详细信息
  • 中图分类号: O343.8;O343.6;O33

Elastodynamic Analysis at an Interface of Viscous Fluid/Thermoelastic Micropolar Honeycomb Medium due to Inclined Load

  • 摘要: 研究倾斜荷载作用在黏性流体与热弹性微极蜂窝结构固体界面上时,荷载倾斜角的影响.假设倾斜荷载是法向荷载和切向荷载的线性组合.为求解该问题,对时间变量进行Laplace变换,对空间变量进行Fourier变换.通过引入势函数,获得了变换域中应力、温度分布和压力的表达式.利用数值逆变换技术,求得问题的物理解.同时,得到了频域中的表达式,以及变量适当变化时稳态情况下的表达式.用图形显示不同荷载源和荷载倾角变化时的响应.并且讨论了一些特殊情况.
  • [1] Eringen A C. Linear theory of micropolar elasticity[J].Journal of Mathematics and Mechanics,1966,15(6):909-923.
    [2] Chung J,Waas A M. Elastic imperfection sensitivity of hexagonally packed circular-cell honeycombs[J].Proceedings of the Royal Society of London-A,2002,458(2028):2851-2868. doi: 10.1098/rspa.2002.0976
    [3] Gibson L J,Ashby M F.Cellular Solids:Structure and Properties[M].Oxford:Pergamon, 1988.
    [4] Huyang F Y, Yan B H,Yang D U. The effects of material elastic honeycomb structure with negative Poisson's ratio using the finite element method[J].Engineering Computations,2002,19(7):742-763. doi: 10.1108/02644400210444302
    [5] Liang S,Chen H L. Investigation on the square cell honeycomb structures under axial loading[J].Composite Structures,2006,42(4):446-454.
    [6] Triplett M H,Schonberg W P. Static and dynamic finite element analysis of honeycomb structure[J].Structural Engineering and Mechanics,1998,6:95-113.
    [7] Wang X L, Stronge W J. Micropolar theory for two-dimensional stresses in elastic honeycomb[J].Proceedings of the Royal Society of London-A,1999, 455(1986):2091-2116. doi: 10.1098/rspa.1999.0394
    [8] Yang D U, Huang F Y. Analysis of Poisson's ratio for micropolar elastic rectangular plate using the finite element method[J].Engineering Computations,2001,18(7/8):1012-1030. doi: 10.1108/EUM0000000006213
    [9] Lord H, Shulman Y A. Generalized dynamical theory of thermoelasticity[J].Journal of the Mechanics and Physics of Solids,1967,15(5):299-309. doi: 10.1016/0022-5096(67)90024-5
    [10] Fehler M. Interactions of seismic waves with a viscous liquid layer[J].Bulletin of the Seismological Society of America,1982,72(1):55-72.
    [11] Fung Y C.Foundations of Solid Mechanics[M].New Delhi:Prentice Hall,1968.
    [12] Kumar R, Ailawalia P. Elastodynamics of inclined loads in a micropolar cubic crystal[J].Mechanics and Mechanical Engineering,2005,9(2):57-75.
    [13] Gauthier R D.Mechanics of Micropolar Media[M].In:Brulin O, Hsieh R K T, Eds.Experimental Investigations on Micropolar Media. Singapore:World Scientific, 1982.
    [14] White F M.Fluid Mechanics[M]. McGraw Hill International edition, 1994.
  • 加载中
计量
  • 文章访问数:  3055
  • HTML全文浏览量:  169
  • PDF下载量:  615
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-03-18
  • 修回日期:  2008-12-26
  • 刊出日期:  2009-03-15

目录

    /

    返回文章
    返回