留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性耗散-色散方程行波解的存在性

M·B·A·曼索

M·B·A·曼索. 非线性耗散-色散方程行波解的存在性[J]. 应用数学和力学, 2009, 30(4): 479-483.
引用本文: M·B·A·曼索. 非线性耗散-色散方程行波解的存在性[J]. 应用数学和力学, 2009, 30(4): 479-483.
M. B. A. Mansour. Existence of Traveling Wave Solutions for a Nonlinear Dissipative-Dispersive Equation[J]. Applied Mathematics and Mechanics, 2009, 30(4): 479-483.
Citation: M. B. A. Mansour. Existence of Traveling Wave Solutions for a Nonlinear Dissipative-Dispersive Equation[J]. Applied Mathematics and Mechanics, 2009, 30(4): 479-483.

非线性耗散-色散方程行波解的存在性

详细信息
    作者简介:

    M·B·A·曼索,M.B.A.Mtansour(E-mail:mah_nansour@hotmail.com).

  • 中图分类号: O175.29;O347;O193

Existence of Traveling Wave Solutions for a Nonlinear Dissipative-Dispersive Equation

  • 摘要: 非线性耗散-色散方程出现在很多物理现象中.基于动力系统理论,利用几何奇摄动法,当耗散项系数充分小时,研究了该方程行波解的存在性.结果表明,在常微分方程组的一个三维系统中,行波依靠二维的慢流变形而存在.然后利用Melnikov方法,在该流形中建立了同宿轨道的存在性,它与方程的孤立波解相对应.进一步,给出了某些数值计算,得到该波轨道的近似.
  • [1] Kliakhandler I L, Porubov A V, Velarde M G.Localized finite-amplitude disturbances and selection of solitary waves[J].Phys Rev E,2000,62:4959-4962. doi: 10.1103/PhysRevE.62.4959
    [2] Lou S Y, Huang G X, Ruan H Y. Exact solitary waves in a convecting fluid[J].J Phys A,1991,24(11): L587-L590.
    [3] Porubov A V. Exact travelling wave solutions of nonlinear evolution equation of surface waves in a convecting fluid[J].J Phys A,1993,26(17): L797-L800.
    [4] Velarde M G, Nekorkin V I, Maksimov A G. Further results on the evolution of solitary waves and their bound states of a dissipative Korteweg-de Vries equation[J].Internat J Bifurcation Chaos,1995,5(3): 831-839. doi: 10.1142/S0218127495000612
    [5] Fenichel N. Geometric singular perturbation theory for ordinary differential equations [J].J Differantial Equations,1979,31(1): 53-98. doi: 10.1016/0022-0396(79)90152-9
    [6] Jones C K R T. Geometric singular perturbation theory[A].In: Johnson R , Ed.Dynamical Systems[C].Berlin, Heidelberg: Springer-Verlag, 1995.
    [7] Ruan S G, Xiao D M. Stability of steady states and existence of travelling waves in a vector-disease model[J].Proc Roy Soc Edinburgh, Sect A,2004,134(5): 991-1011. doi: 10.1017/S0308210500003590
    [8] Ktrychko Y N, Bartuccelli M V, Blyuss K B. Persistence of traveling wave solutions of a fourth order diffusion system[J].J Comput Appl Math,2005,176(2): 433-443. doi: 10.1016/j.cam.2004.07.028
    [9] Mansour M B A. Existence of traveling wave solutions in a hyperbolic-elliptic system of equations[J].Comm Math Sci,2006,4:731-739.
    [10] Guckenheimer J, Holmes P.Nonlinear Oscillations, Dynamical System, and Bifurcation of Vector Fields[M]. New York: Springer-Verlag, 1983.
  • 加载中
计量
  • 文章访问数:  2982
  • HTML全文浏览量:  166
  • PDF下载量:  592
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-06-09
  • 修回日期:  2009-03-06
  • 刊出日期:  2009-04-15

目录

    /

    返回文章
    返回