Stability and Bifurcation of Unbalance Rotor/Labyrinth Seal System
-
摘要: 研究迷宫密封对不平衡转子系统动力稳定性的影响.存在不平衡量的转子在旋转过程中受到周期激励,低转速时,转子作与激励同频率的周期运动,随着转速的提高,达到一定阈值时周期运动开始失稳.对迷宫密封的气动力采用Muszynska非线性力学模型,用打靶法求解转子运动周期解,并根据Floquet理论分析了周期解的稳定性及失稳后的动力学特性.Abstract: The influence of labyrinth seal on the stability of unbalanced rotor system was presented. Under the periodic excitation of rotor unbalance, the whirling vibration of rotor is synchronous if the rotation speed is below stability threshold, whereas the vibration becomes severe and asynchronous which is defined as unstable if the rotation speed exceeds threshold. The Muszynska model of seal force and shooting method were used to investigate synchronous solution of the dynamic equation of rotor system. Then, based on Floquet theory the stability of synchronous solution and unstable dynamic characteristic of system were analyzed.
-
Key words:
- nonlinear vibration /
- stability /
- seal /
- rotor /
- shooting method
-
[1] 任兴民,顾家柳,秦卫阳.具有封严蓖齿转子系统的动力稳定性分析[J].应用力学学报,1996,13(2):77-83. [2] 郑水英,潘晓弘,沈庆根.带周向挡片的迷宫密封动力特性的研究[J].机械工程学报,1999,35(2):49-52. [3] Muszynska A.A whirl and whip rotor/bearing stability problems[J].J Sound and Vibration,1986,110(3):443-462. [4] Muszynska A.A model testing of rotor/bearing systems[J].International Journal of Analytical and Experimental Model Analysis,1986,1(3):15-34. [5] Muszynska A,Bently D E.Frequency-swept rotating input perturbation techniques and identification of the fluid force models in rotor/bearing/seal systems and fluid handling machines[J].J Sound and Vibration,1990,143(1):103-124. [6] 陈予恕,丁千.非线性转子-密封系统的稳定性和Hopf分岔研究[J].振动工程学报,1997,10(3):368-374. [7] 张文.转子动力学理论基础[M].北京,科学出版社,1990. [8] 周纪卿,朱因远.非线性振动[M].西安:西安交通大学出版社,1998. [9] 陈予恕.非线性振动系统的分岔和混沌理论[M].北京:高等教育出版社,1993. [10] Loose G,Joseph D D.Elementary Stability and Bifurcation Theory[M].New York:Springer-Verlag,1980. [11] Waggins.Introduction to Applied Nonlinear Dynamical Systems and Chaos[M].New York:Springer-Verlag,1990.
计量
- 文章访问数: 2535
- HTML全文浏览量: 101
- PDF下载量: 763
- 被引次数: 0