Analysis and Application of Ellipticity of Stability Equations on Fluid Mechanics
-
摘要: 利用抛物化稳定方程(PSE)特征分析得知,原始扰动量的线性和非线性PSE整体来说为抛物型.利用PSE的次特征分析证明,对速度U,在亚音速和跨音速区,线性PSE分别为椭圆型和双曲-抛物型;对速度U+u,在亚音速和跨音速区,非线性PSE分别为椭圆型和双曲-抛物型(其中,U和u分别为主流方向的扰动和未扰流速度分量).结论表明,流体运动稳定性方程组的"抛物化"简化,仅把信息的对流扩散传播抛物化,而保留了信息的对流扰动传播特性,PSE实质上是扩散抛物化稳定性方程组.根据特征次特征理论提出了消除PSE剩余椭圆特性的方法,所得结论对线性PSE已有结论一致,并给出了Mach数的影响.同时,进一步给出了消除非线性PSE的剩余椭圆特性的方法.Abstract: By using characteristic analysis of the linear and nonlinear parabolic stability equations(PSE), PSE of primitive disturbance variables are prored to be parabolic in total. By using sub-characteristic analysis of PSE, the linear PSE are proved to be elliptical and hyperbolic-parabolic, for velocity U, in subsonic and supersonic:respectively U+u in subsonic and supersonic, respectively. The methods are gained that the remained ellipticity is removed from the PSE by characteristic and sub-characteristic theories, the results for the linear PSE are consistent with the known results, and the influence of the Mach number is also given out. At the same time, the methods of removing the remained ellipticity are further obtained from the nonlinear PSE.
-
Key words:
- compressible fluid /
- parabolic stability equations /
- characteristic /
- sub-characteristic
-
[1] Herbert Th,Bertolotti F P.Stability analysis of non-parallel boundary layers[J].Bul American Phys Soc,1987,32(8):2097. [2] 高智.流体力学基本方程组(BEFM)的层次结构理论和简化Navier-Stokes方程组(SNSE)[J].力学学报,1988,20(2),107-116. [3] Herbert Th.Nonlinear stability of parallel flows by high-order amplitude expansions[J].ALAA J,1980,18(3):243-248. [4] Haj-Hariri H.Characteristics analysis of the parabolic stability equations[J].Stud Appl Math,1994,92(1):41-53. [5] Chang C L,Malik M R,Erleracher G,et al.Compressible stability of growing boundary layers nsing parabolic stability equations[Z].AALA91-1636,New York:AAIA,1991. [6] 高智.简化Navier-Stokes方程的层次结构及其力学内涵和应用[J].中国科学,A辑,1987,17(10):1058-1070. [7] 高智,周光炯.高雷数流动理论、算法和应用的若干研究进展[J].力学进展,2001,31(3):417-436. [8] GAO Zhi,SHEN Yi-qimg.Discrete fluid dynamics and flow numerical simulation[A].In:F Dubois,WU Hua-mu Eds.New Advances in Computational Fluid Dynamics[C].Beijing:Higher Education Press,Beijing,2001,204-229. [9] Schliching H.Boundary-Layer Theory[M].Tth ed.New York:McGraw-Hill,1979.
计量
- 文章访问数: 2569
- HTML全文浏览量: 146
- PDF下载量: 946
- 被引次数: 0