留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

窄带随机噪声作用下非线性系统的响应

戎海武 王向东 孟光 徐伟 方同

戎海武, 王向东, 孟光, 徐伟, 方同. 窄带随机噪声作用下非线性系统的响应[J]. 应用数学和力学, 2003, 24(7): 723-729.
引用本文: 戎海武, 王向东, 孟光, 徐伟, 方同. 窄带随机噪声作用下非线性系统的响应[J]. 应用数学和力学, 2003, 24(7): 723-729.
RONG Hai-wu, WANG Xiang-dong, MENG Guang, XU Wei, FANG Tong. Response of Nonlinear Oscillator Under Narrow-Band Random Excitation[J]. Applied Mathematics and Mechanics, 2003, 24(7): 723-729.
Citation: RONG Hai-wu, WANG Xiang-dong, MENG Guang, XU Wei, FANG Tong. Response of Nonlinear Oscillator Under Narrow-Band Random Excitation[J]. Applied Mathematics and Mechanics, 2003, 24(7): 723-729.

窄带随机噪声作用下非线性系统的响应

基金项目: 国家自然科学基金资助项目(10072049,19972054);广东省自然科学基金资助项目(000017);上海交通大学振动、冲击、噪声国家重点实验室开放基金(VSN-2002-04)
详细信息
    作者简介:

    戎海武(1966- ),男,浙江宁波人,副教授,博士(E-mail:ronghw@foshan.net).

  • 中图分类号: O324

Response of Nonlinear Oscillator Under Narrow-Band Random Excitation

  • 摘要: 研究了Duffing振子在窄带随机噪声激励下的主共振响应和稳定性问题.用多尺度法分离了系统的快变项,讨论了系统的阻尼项、随机项等对系统响应的影响.在一定条件下,系统具有两个均方响应值.数值模拟表明方法是有效的.
  • [1] Den Hartog J P.Mechanical Vibrations[M].forth edition.New York:McGraw-Hill,1956.
    [2] Lyon R H,Heckl M,Hazelgrove C B.Response of hard-spring oscillator to narrow-band excitation[J].Journal of the Acoustical Society of America,1961,33(4):1404-1411.
    [3] Richard K,Anand G V.Nonlinear resonance in suings under narrow band random excitation-part Ⅰ:planar response and stability[J].Journal of Sound and Vibration,1983,86(8):85-98.
    [4] Davies H G,Nandall D.Phase plane for narrow band random excitation of a Duffing oscillator[J].Journal of Sound and Vibration,1986,104(2):277-283.
    [5] Iyengar R N.Response of nonlinear systems to narrow-band excitation[J].Structural Safety,1989,6(2):177-185.
    [6] Lennox W C,Kuak Y C.Narrow band excitation of a nonlinear oscillator[J].Journal of Applied Mechanics,1976,43(2):340-344.
    [7] Grigoriu M.Probabilistic analysis of response of Duffing oscillator to narrow band stationary Gaussian excitation[A].In:E H Dowell Ed.Proceedings of First Pan-American Congress of Applied Mechantics[C].Rio de Janeiro:Brazil,1989.
    [8] Davis H G,Liu Q.The response probability density function of a Duffing oscillator with random narrow band excitation[J].Journal of Sound and Vibration,1990,139(1):1-8.
    [9] Kapitaniak T.Stochastic response with bifurcations to non-linear Duffing's oscillator[J].Journal of Sound and Vibration,1985,102(3):440-441.
    [10] FangT,Dowell E H.Numerical simulations of jump phenomena in stable Duffing systems[J].International Journal of Nonlinear Mechanics,1987,22(2):267-274.
    [11] Zhu W Q,Lu M Q,Wu Q T.Stochastic jump and bifurcation of a Duffing oscillator under narrowband excitation[J].Journal of Sound and Vibration,1993,165(2):285-304.
    [12] Wedig W V.Invariant measures and Lyapunov exponents for generalized parameter fluctuations[J].Structural Safety,1990,8(1):13-25.
    [13] Nayfeh A H.Introduction to Perturbation Techniques[M].New York:Wiley,1981.
    [14] Rajan S,Davies H G.Multiple time scaling of the response of a Duffing oscillator to narrow-band excitations[J].Journal of Sound and Vibration,1988,123(3):497-506.
    [15] Nayfeh A H,Serhan S J.Response statistics of nonlinear systems to combined deterministic and random excitations[J].International Journal of Nonlinear Mechanics,1990,25(5):493-509.
    [16] RONG Hai-wu,XU Wei,FANG Tong.Principal response of Duffing oscillator to combined deterministic and narrow-band random parametric excitation[J].Journal of Sound and Vibration,1998,210(4):483-515.
    [17] 朱位秋.随机振动[M].北京:科学出版社,1992.
  • 加载中
计量
  • 文章访问数:  2547
  • HTML全文浏览量:  173
  • PDF下载量:  727
  • 被引次数: 0
出版历程
  • 收稿日期:  2000-08-30
  • 修回日期:  2002-12-01
  • 刊出日期:  2003-07-15

目录

    /

    返回文章
    返回