留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含有界面裂纹的粘弹性层合板应变能释放率的计算

刘玉岚 王彪 王殿富

刘玉岚, 王彪, 王殿富. 含有界面裂纹的粘弹性层合板应变能释放率的计算[J]. 应用数学和力学, 2003, 24(1): 12-18.
引用本文: 刘玉岚, 王彪, 王殿富. 含有界面裂纹的粘弹性层合板应变能释放率的计算[J]. 应用数学和力学, 2003, 24(1): 12-18.
LIU Yu-lan, WANG Biao, WANG Dian-fu. On the Calculation of Energy Release Rate for Viscoelastic Cracked Laminates[J]. Applied Mathematics and Mechanics, 2003, 24(1): 12-18.
Citation: LIU Yu-lan, WANG Biao, WANG Dian-fu. On the Calculation of Energy Release Rate for Viscoelastic Cracked Laminates[J]. Applied Mathematics and Mechanics, 2003, 24(1): 12-18.

含有界面裂纹的粘弹性层合板应变能释放率的计算

基金项目: 国家自然科学基金资助项目(50232030;10172030);黑龙江省自然科学基金资助项目;国家杰出青年基金
详细信息
    作者简介:

    刘玉岚(1962- ),吉林人,博士(E-mail:myliu51@hotmail.com)

  • 中图分类号: O346.1

On the Calculation of Energy Release Rate for Viscoelastic Cracked Laminates

  • 摘要: 将裂纹扩展所对应的能量释放率定义为同一时刻,同样载荷条件下两种状态的能量之差.一是裂纹长度为a时,系统内能,第二状态是指裂纹长度为a+Δa时系统内能.这样,所定义的能量释放率相当于在无限短时间内,裂纹从a扩展到a+Δa所释放的能量.通过计算发现,对于给定的加载历史,应变能释放率是时间的函数,它的最大值相对应于层间开裂临界状态.在William工作的基础上,根据经典梁的理论求得双悬臂梁结构的应变能释放率的显函表达式.
  • [1] Watson K A,Liechtl K M.Adhesion measurements of printed wiring board assemblies[A].In:J C Suhling Ed.Applications of Experimental Mechanics to Electronic Packaging[C] ,ASME Press,1995.
    [2] Nguyen L T,Chen A S,Lo R Y.Interfacial integrith in electronic packaging[J].Application of Fracture Mechancis in Electronic Packaging and Materials,EEP-Vol 11/MD-Vol 64,ASME,1995.34-44.
    [3] Christensen R M.A rate-dependent criterion for crack growth[J].International Journal of Fracture,1979,15(3):3-12.
    [4] Christensen R M.Theory of Viscoelasticity,an Introduction[M].Second Edition.New York:Academic Press,Inc,1982.
    [5] Schapery R A.A theory of crack initiation and growth in viscoelastic media Ⅰ:Theoretical development[J].International Journal of Fracture,1975,11(1):141-159.
    [6] Knauss W G,Dietmann H.Crack propagation under variable load histories in linearly viscoelastic solids[J].Internat J Engng Sci,1970,8:643-656.
    [7] Knauss W G,Delayed failure-the Griffith problem for linearly viscoelastic materials[J].International Journal of Fracture Mechanics,1970,6(1):7-20.
    [8] Wnuk M P.Subcritical growth of fracture (inelastic fatigue)[J].International Journal of Fracture Mechanics,1971,7(4):383-407.
    [9] Liang R Y,Zhou J.Energy based approach for crack initiation and propagation in viscoelastic solid[J].Engineering Fracture Mechanics,1997,58(1/2):71-85.
    [10] Frassine R,Ring M,Leggio A,et al.Experimental analysis of viscoelastic criteria for crack initiation and growth in polymers[J].International Journal of Fracture,1996,81(1):55-75.
    [11] Alfrey T.Non-homogeneous stresses in viscoelastic media[J].Quarterly Applied Mathematics,1944,2(113):113-119.
    [12] Sills L B,Benvensite Y.Steady state propagation of a mode 3 interface crack in an inhomogenous viscoelastic media[J].Internat J Engng Sci,1981,19(6):1255-1268.
    [13] Ryvkin M,Banks-Sills L.Mode Ⅲ delamination of a viscoelastic strip from a dissimilar viscoelastic half-plane[J].Internat J Solids and Structures,1994,31:551-566.
    [14] Williams J G.On the calculation of energy release rates for cracked laminates[J].International Journal of Fracture,1988,36(2):101-119.
    [15] Huet C.Minimum theorem for viscoelasticity[J].Eur J Mech A/Solids,1992,11(5):653-684.
  • 加载中
计量
  • 文章访问数:  1970
  • HTML全文浏览量:  159
  • PDF下载量:  625
  • 被引次数: 0
出版历程
  • 收稿日期:  2001-09-27
  • 修回日期:  2002-08-25
  • 刊出日期:  2003-01-15

目录

    /

    返回文章
    返回