[1] |
Newton I.On the binomial theorem for fractional and negative exponents[A].In:G D Walcott Ed.A Source Book in Mathematics[C].New York:McGraw Hill Book Company,1929,224-228.
|
[2] |
Dienes P.The Taylor Series[M].Oxford:Dover,1931.
|
[3] |
廖世俊.The proposed homotopy analysis method for nonlinear problems[D].博士论文.上海:上海交通大学,1992.
|
[4] |
LIAO Shi-jun,An approximate solution technique not depending on small parameters:a special example[J].Internat J Non-Linear Mech,1995,30:371-380.
|
[5] |
LIAO Shi-jun.A kind of approximate solution technique which does not depend upon small parameters (Part 2):an application in fluid mechanics[J].Internat J Non-Linear Mech,1997,32:815-822.
|
[6] |
LIAO Shi-jun.A simple way to enlarge the convergence region of perturbation approximations[J].Nonlinear Dynamics,1999,19:93-110.
|
[7] |
LIAO Shi-jun.An explicit,totally analytic approximation of Blasius' viscous flow problems[J].Internat J Non-Linear Mech,1999,34:759-778.
|
[8] |
LIAO Shi-jun.A uniformly valid analytic solution of 2D viscous flow past a semi-infinite flat plate[J].J Fluid Mech,1999,385:101-128.
|
[9] |
LIAO Shi-jun,Campo A.Analytic solutions of the temperature distribution in Blasius viscous flow problems[J].J Fluid Mech,2002,453:411-425.
|
[10] |
LIAO Shi-jun,An analytic approximation of the drag coefficient for the viscous flow past a sphere[J].Internat J Non-Linear Mech,2002,37:1-18.
|
[11] |
Nayfeh A H.Perturbation Methods[M].New York:John Wiley & Sons,Inc,2000.
|
[12] |
Lyapunov A M.General Problem on Stability of Motion[M].London:Taylor & Francis,1992.(English version).
|
[13] |
Karmishin A V,Zhukov A I,Kolosov V G.Methods of Dynamics Calculation and Testing for Thin-Walled Structures[M].Moscow:Mashinostroyenie,1990.
|
[14] |
Adomian G.Nonlinear stochastic differential equations[J].J Math Anal Appl,1976,55:441-452.
|
[15] |
Adomian,G.Solving Frontier Problems of Physics:the Decomposition Method[M].Boston:Kluwer Academic Publishers,1994.
|
[16] |
Wazwaz A M.The decomposition method applied to systems of partial differential equations and to the reactioncdiffusion Brusselator model[J].Applied Mathematics and Computation,2000,110:251-264.
|
[17] |
Shawagfeh N T.Analytical approximate solutions for nonlinear fractional differential equations[J].Applied Mathematics and Computation,2002,131:517-529.
|