Poincaré-Cartan Integral Invariants of Birkhoffian Systems
-
摘要: 基于现代微分几何学,分析了作为保守系统和非保守系统的推广——Birkhoff系统的辛结构.构造Birkhoff系统的Poincar-Cartan积分不变量.最后,将一维阻尼振动作为示例,求出其Poincar-Cartan积分不变量.
-
关键词:
- Birkhoff系统 /
- 辛结构 /
- 自伴随 /
- Poincar-Cartan积分不变量
Abstract: Based on modern differential geometry, the symplectic structure of a Birkhoffian system which is an extension of conservative and nonconservative systems is analyzed. An integral invariant of Poincar -Cartan's type is constructed for Birkhoffian systems. Finally, one-dimensional damped vibration is taken as an illustrative example and an integral invariant of Poincar's type is found. -
[1] 陈滨.分析动力学[M].北京:北京大学出版社,1987. [2] LIU Duan,LUO Yong,XIN Shen-yu.About the basic integral variants of holonomic nonconservative dynamical systems[J].Acta Mechanica Sinica,1991,7(2):175-185. [3] Marsden J E,Ratiu T S.Introduction to Mechanics and Symmetry[M].New York:Springer Verlag,1994. [4] GUO Yong-xin,SHANG Mei,Mei Feng-xiang.Poincaré-Cartan integral invariants of nonconservative dynamical systems[J].Internat J Theoret Phys,1999,38(3):1017-1027. [5] GUO Yong-xin,SHANG Mei,LUO Shao-kai,et al.Poincaré-Cartan integral variants and invariants of nonholonomic constrained systems[J].Intetnat J Theoret Phys.,2001,40(6):1197-1205. [6] 刘成群,罗诗裕.非保守系统的积分不变量及其在现代物理中的应用[J].应用数学与力学,1985,6(10):879-885. [7] Santilli R M.Foundation of Theoretical MechanicsⅡ[M].New York:Springer-Verlag,1983. [8] 梅凤翔.Birkhoff系统动力学[M].北京:北京理工大学出版社,1996. [9] 梅凤翔.Birkhoff系统动力学研究进展[J].力学进展,1997,27(4):436-446. [10] MEI Feng-xiang.Lie symmetry and conservation law of Birkhoffian system[J].Chinese Science Bulletin,1994,44(4):318-320.
计量
- 文章访问数: 2400
- HTML全文浏览量: 93
- PDF下载量: 719
- 被引次数: 0