Finite Element Displacement Perturbation Method for Geometric Nonlinear Behaviors of Shells of Revolution Overall Bending in a Meridional Plane and Application to Bellows(Ⅰ)
-
摘要: 为切实有效地计算波纹管,建立了旋转壳在子午面内整体弯曲几何非线性问题的摄动有限元法。以结构环向应变的均方根为摄动小参数,将有限元节点位移列式和节点力列式直接展开。通过摄动小参数将非线性有限元的载荷分级和迭代过程有机地统一起来,即载荷的分级是有约束的,每一级载荷增量和所对应的位移增量之间的关系是已知的,每一级的计算一步到位。为叙述方便并具实用性,将旋转壳用截锥壳单元进行离散。位移分量和载荷分量沿环向按Fourier级数展开,沿子午线用多项式插值,端面弯矩和横向力化成载荷分量离散到节点上。采用Sanders中小转角非线性几何方程和各向同性广义Hooke定律。对多层材料叠合而成的旋转壳按各层薄膜应变、弯曲应变、扭转应变相等的原则进行处理,该方法能方便有效地计算单层和多层波纹管整体纯弯曲、横向弯曲的几何非线性问题。并为有限元处理非线性问题提供了一条新途径。Abstract: In order to analyze bellows effectively and practically, the finite-element-displacement-per- turbation method (FEDPM) is proposed for the geometric nonlinear behaviors of shells of revolution subjected to pure bending moments or lateral forces in one of their meridional planes. The formulations are mainly based upon the idea of perturbation that the nodal displacement vector and the nodal force vector of each finite element are expanded by taking root-mean-square value of circumferential strains of the shells as a perturbation parameter. The load steps and the iteration times are not as arbitrary and unpredictable as in usual nonlinear analysis. Instead, there are certain relations between the load steps and the displacement increments, and no need of iteration for each load step. Besides, in the formulations, the shell is idealized into a series of conical frusta for the convenience of practice, Sander's non- linear geometric equations of moderate small rotation are used, and the shell made of more than one material ply is also considered..
-
[1] 钱伟长,郑思梁.轴对称圆环壳的复变量方程和轴对称细环壳的一般解[J].清华大学学报,1979,19(1):27-47. [2] 钱伟长,郑思梁.轴对称圆环壳的一般解[J].应用数学和力学,1980,1(3):287-299. [3] 钱伟长,郑思梁.半圆弧波纹管的计算-环壳一般解的应用[J].应用数学和力学,1981,2(1):97-111. [4] 朱卫平,黄黔,郭平.柔性圆环壳在子午面内整体弯曲的复变量方程及细环壳的一般解[J].应用数学和力学,1999,20(9):889-895. [5] 朱卫平,郭平,黄黔.U型波纹管整体弯曲问题的一般解[J].应用数学和力学,2000,21(4):331-341. [6] Standards of the Expansion Joint Manufacturers Association (EJMA)[S].EJMA INC,Seventh Edition,New York,1998. [7] CHIEN Wei-zang.Large deflection of a circular clamped plate under uniform pressure[J].Chinese Journal of Physics,1947,7(2):102-113. [8] CHIEN Wei-zang.Asymptotic behavior of a thin clamped plate under uniform pressure at very large deflection[J].The Science Reports of National Tsing Hua University,1948,5(1):71-94. [9] 黄黔.复合载荷作用下圆薄板的大挠度问题[J].应用数学和力学,1982,3(1):711-720. [10] 黄黔.摄动初参数法解轴对称壳几何非线性问题[J].应用数学和力学,1986,7(6):533-543. [11] Cook R D.有限元分析的概念和应用(1981,第二版)[M].程耿东,何穷,张国荣译.北京:科学出版社,1989. [12] Sanders J L.Nonlinear theories for thin shells[J].Quart Applied Mathematics,1963,21(1):21-36. [13] 欧阳鬯,马文华.弹性塑性有限元[M].湖南:湖南科技出版社,1983,377-400. [14] Skoczen B.Effect of shear deformation and relaxation of support conditions on elastic buckling of pressurized expansion bellows[J].Journal of Pressure Vessel Technology,Transaction of the ASME,1999,121(2):127-132.
计量
- 文章访问数: 2437
- HTML全文浏览量: 114
- PDF下载量: 609
- 被引次数: 0