留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Benson真有效意义下向量集值优化的广义Fritz John条件

盛宝怀 刘三阳

盛宝怀, 刘三阳. Benson真有效意义下向量集值优化的广义Fritz John条件[J]. 应用数学和力学, 2002, 23(12): 1289-1295.
引用本文: 盛宝怀, 刘三阳. Benson真有效意义下向量集值优化的广义Fritz John条件[J]. 应用数学和力学, 2002, 23(12): 1289-1295.
SHENG Bao-huai, LIU San-yang. On the Generalized Fritz John Optimality Conditions of Vector Optimization With Set-Valued Maps Under Benson Proper Efficiency[J]. Applied Mathematics and Mechanics, 2002, 23(12): 1289-1295.
Citation: SHENG Bao-huai, LIU San-yang. On the Generalized Fritz John Optimality Conditions of Vector Optimization With Set-Valued Maps Under Benson Proper Efficiency[J]. Applied Mathematics and Mechanics, 2002, 23(12): 1289-1295.

Benson真有效意义下向量集值优化的广义Fritz John条件

基金项目: 国家自然科学基金资助项目(69972036);宁波市博士基金资助项目;宁波大学博士后基金资助项目
详细信息
    作者简介:

    盛宝怀(1962- ),男,陕西凤县人,副教授,博士(E-mail:shengbaohuai@263.net).

  • 中图分类号: O221.6

On the Generalized Fritz John Optimality Conditions of Vector Optimization With Set-Valued Maps Under Benson Proper Efficiency

  • 摘要: 引入了一种有关集值映射的切导数和强、弱*伪凸的概念。借助凸集分离定理及锥分离定理建立了Benson真有效意义下向量集值优化导数型的FritzJohn最优性条件,并对条件的充分性进行了讨论。当特殊到单值映射时这些最优性条件与经典的结果完全吻合。
  • [1] 胡毓达.多目标规划有效性理论[M].上海:上海科学技术出版社,1994,126-127.
    [2] Luc D T.Theory of Vector Optimization,Lecture Notes in Economics and Mathematical Systems[M].Berlin:Springer-Verlag,1989:140-164.
    [3] Corley H W.Optimality conditions for maximizations of set-valued functions[J].J Optim Theory Appl,1988,58(1):1-10.
    [4] CHEN Guang-ya,Jahn J.Optimality conditions for set-valued optimization problems[J].Math Methods Oper Res,1998,48(2):187-200.
    [5] 孟志青.集值映射的Hahn-Banach定理[J].应用数学和力学,1998,19(1):55-61.
    [6] Baier J,Jahn J.On subdifferential of set-valued maps[J].J Optim Theory Appl,1999,100(1):233-240.
    [7] WANG Shou-yang,LI Zhong-fei.Scalarization and Lagrange duality in multiobjective optimization[J].Optimization,1992,26(2):315-324.
    [8] CHEN Guang-ya,RONG Wei-dong.Characterizations of the Benson proper efficiency for nonconvex vector optimization[J].J Optim Theory Appl,1998,98(2):365-384.
    [9] LI Zhong-fei.Benson proper efficiency in the vector optimization of set-valued maps[J].J Optim Theory Appl,1998,98(3):623-649.
    [10] 盛宝怀,刘三阳,熊胜君.Benson 真有效意义下向量集值优化的广义Fritz John条件[J].经济数学,2000,17(1):59-65.
    [11] Aubin J P,Frankowska H.Set-Valued Analysis[M].Boston:Birkhauser,1990,121-138.
    [12] Borwein J M.Proper efficient points for maximizations with respect to cone[J].SIAM J Control Optim,1977,15(1):57-63.
    [13] LI Ze-min.A theorem of the alternative and its application to the optimization of set-valued maps[J].J Optim Theory Appl,1999,100(2):365-375.
    [14] Dauer J P,Saleh O A.A characterization of proper minimal problem as a solutions of sublinear optimization problems[J].J Math Anal Appl,1993,178(2):227-246.
    [15] Zowe J.A remark on a regularity assumption for the mathematical programming problem in Banach spaces[J].J Optim Theory Appl,1978,25(3):375-381.
  • 加载中
计量
  • 文章访问数:  2524
  • HTML全文浏览量:  64
  • PDF下载量:  847
  • 被引次数: 0
出版历程
  • 收稿日期:  2000-03-29
  • 修回日期:  2002-05-14
  • 刊出日期:  2002-12-15

目录

    /

    返回文章
    返回