留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

畴极化转动对多晶铁电材料断裂特性的影响

程锦泉 王彪 杜善义

程锦泉, 王彪, 杜善义. 畴极化转动对多晶铁电材料断裂特性的影响[J]. 应用数学和力学, 2002, 23(11): 1113-1123.
引用本文: 程锦泉, 王彪, 杜善义. 畴极化转动对多晶铁电材料断裂特性的影响[J]. 应用数学和力学, 2002, 23(11): 1113-1123.
CHENG Jin-quan, WANG Biao, DU Shan-yi. A Micromechanics Method to Study the Effect of Domain Switching on Fracture Behavior of Polycrystalline Ferroelectric Ceramics[J]. Applied Mathematics and Mechanics, 2002, 23(11): 1113-1123.
Citation: CHENG Jin-quan, WANG Biao, DU Shan-yi. A Micromechanics Method to Study the Effect of Domain Switching on Fracture Behavior of Polycrystalline Ferroelectric Ceramics[J]. Applied Mathematics and Mechanics, 2002, 23(11): 1113-1123.

畴极化转动对多晶铁电材料断裂特性的影响

基金项目: 国家杰出青年基金资助(19725209)
详细信息
    作者简介:

    程锦泉(1971- ),福建闽侯人,博士(E-mial:chengjq@ihpc.a-star.edu.sg).

  • 中图分类号: O482.41

A Micromechanics Method to Study the Effect of Domain Switching on Fracture Behavior of Polycrystalline Ferroelectric Ceramics

  • 摘要: 主要基于细观力学方法揭示了畴极化转动对多晶铁电陶瓷的各向异性断裂特性的平均影响。首先,用Eshelby-Mori-Tanaka理论和统计模型分析了无穷大铁电材料体中一椭球夹杂的内、外电弹性场,得到畴极化转动对电弹性场的平均影响;其次,推导了等效多晶铁电陶瓷中含一钱币状裂纹的裂纹扩展力(能量释放率)Gext,并用它估计了畴极化转动对多晶铁电陶瓷断裂特性的影响。对BaTiO3陶瓷中裂纹扩展力的计算结果表明,对多晶铁电材料断裂特性分析必须考虑畴极化转动的影响。计算结果得出了与实验相一致的结论:在受较小的力时,外加电场对裂纹扩展产生较大的影响,而且在某种程度上能促进了裂纹扩展。
  • [1] Jaff B, Cook W R, Jaff H. Piezoelectric Ceramic[M]. New York: Academic press, 1971.
    [2] Chueng H T,Kim H G. Characteristics of domain in tetragonal phase PZT ceramics[J]. Ferroelectrics, 1987, 76:327-333.
    [3] Zenon B. Optical microscopic mapping of the domain structure of BaTiO3 Microcrystals[J]. Ferroelectrics, 1994, 157:13-18.
    [4] CAO Heng-chu, Evans A G. Nonlinear deformation of ferroelectric ceramics[J]. J Am Ceram Soc, 1993, 76(4): 890-896.
    [5] Ansgar B, Schaufele, et al. Ferroelastic properties of lead zirconate titanate ceramics[J]. J Am Ceram Soc, 1996, 79(10): 2637-2640.
    [6] Zhang Q M. Change of the weak-field properties of Pb(ZrTi)O3 piezoceramics with compressive uniaxial stress and its links to the effect of dopants on the stability of the polarizations in the materials[J]. J Mater Res, 1997, 12(1): 226-234.
    [7] Hwang S C, Lynch C S, McMeeking R M. Ferroelectric/ferroelastic interactions and a polarization switching model[J]. Acta Metall Mater, 1995, 43(5): 2073-2084.
    [8] Hwang S C. The simulation of switching in polycrystalline ferroelectric ceramics[J]. J Appl Phys, 1998, 84(3): 1530-1540.
    [9] Cheng J, Wang B, Du S. Effective electroelastic properties of polycrystalline ferroelectric ceramic predicted by a statistical model[J]. Acta Mechanica, 1999, 138(3-4): 163-175.
    [10] Li J, Weng G J. A theory of domain switch for the nonlinear behavior of ferroelectrics[J]. Proc R Soc Lond, A, 1999, 45: 3493-3511.
    [11] Pohanka R C. Effect of the phase transformation on the fracture behavior of BaTiO3[J]. J Am Ceram Soc, 1978, 61(1-2): 72-75.
    [12] Pisarenko G G. Anisotropy of fracture toughness of piezoelectric ceramic[J]. J Am Ceram Soc, 1985, 68(5): 259-265.
    [13] Lynch C S. Crack growth in ferroelectric ceramics driven by cyclic polarization switching[J]. J Intl Mater Sys, 1995, 6:191-198.
    [14] Cook, R F. Fracture of ferroelectric ceramics[J]. Ferroelectrics, 1983, 50: 267-272.
    [15] Pak Y E. Linear electro-elastic fracture mechanics of piezoelectric materials[J]. International J Fracture, 1992, 54:79-100.
    [16] ZHANG Tong-yi, TONG Pin. Fracture mechanics for a mode Ⅲ crack in a piezoelectric material[J]. Int J Solids Structures, 1996, 33(3): 343-359.
    [17] Suo Z. Tracture mechanics for piezoelectric ceramics[J]. J Mech Phys Solids, 1992, 40(4): 739-765.
    [18] Kumar S. Energy release rate and crack propagation in piezoelectric materials: Part Ⅰ: Mechanical/elcetrical load[J]. Acta Mater, 1997, 45(2): 849-857.
    [19] CHAO Lu-ping, HUANG Jin-hui. Fracture criteria for piezoelectric materials containing multiple crack[J]. J Appl Phys, 1999, 85(9): 6695-6703.
    [20] WANG Biao. Three-dimensional analysis of a flat elliptical crack in a piezoelectric material[J]. Int J Engng Sci, 1992, 30(6):781-791.
    [21] Yang W, Zhu T. Switching-toughening of ferroelectrics subjected to electric fields[J]. J Mech Phys Solids, 1998, 46(2): 291-311.
    [22] Barnett D M, Lothe J. Dislocations and line charges in anisotropic piezoelectric insulators[J]. Phys Status Solidi, B, 1975, 67: 105-117.
    [23] Mura T. Micromechanics of Defects in Solids[M]. Boston: Martinus Nijhoff, 1982.
    [24] Mori T,Tanaka K. Average stress in the matrix and average energy of materials with misfitting inclusion[J]. Acta Metall, 1973, 21: 571-574.
    [25] Merz Walter J. Switching time in ferroelectric BaTiO3 and its dependence on crystal thickness[J]. J Appl Phys, 1956,27(8): 938-943.
    [26] WANG Biao. Three-dimensional analysis of an ellipsoidal inclusion in a piezoelectric material[J]. Int J Solids Structures, 1992, 29(3): 293-308.
  • 加载中
计量
  • 文章访问数:  2079
  • HTML全文浏览量:  111
  • PDF下载量:  572
  • 被引次数: 0
出版历程
  • 收稿日期:  2000-11-18
  • 修回日期:  2002-07-15
  • 刊出日期:  2002-11-15

目录

    /

    返回文章
    返回