Boundedness and Persistence and Global Asymptotic Stability for a Class of Delay Difference Equations With Higher Order
-
摘要: 获得一类高阶时滞差分方程解的有界持久性和全局渐近稳定性的充分条件;所得结果部分地解决了G.Ladas的2个公开问题,推广了一些已知结果。Abstract: Some sufficient conditions for boundedness and persistence and global asymptotic stability of solutions for a class of delay difference equations with higher order are obtained,which partly solve G. Ladas.two open problems and extend some known results.
-
[1] De Vault R, Ladas G, Schultz S W. On the recursive sequence xn+1=(A/xnp)+B/(xn-1q)[A].In: Proceedings of the Second International Conference on Difference Equations[C]. Basel: Gorden and Breach Science Publishers,1996. [2] Philos Ch G, Purnaras I K, Sficas Y G. Global attractivity in a nonlinear difference equation[J]. Appl Math Comput,1994,62:249-258. [3] Ladas G. Open problems and conjectures[A]. In: Proceedings of the First International Conference on Difference Equations[C]. Basel: Gorden and Breach Science Publishers,1995,337-349. [4] Arciero M, Ladas G, Schultz S W. Some open problems about the solutions of the delay difference equation xn+1=A/(xn2)+1/(xn-kp)[J]. Proceedings of the Georgian Academy of Science Mathematics, 1993,1:257-262. [5] Brand L. A sequence defined by a difference equation[J]. Amer Math Monthly,1995,62:489-492. [6] De Vault R, Kocic V L, Ladas G. Global stability of a recursive sequence[J]. Dynamics Systems and Applications,1992,1:13-21. [7] Ladas G. Open problems and conjectures[A]. In: Proceedings of the First International Conference on Differnce Equations[C].Basel:Gorden and Breach Science Publishers,1995,337-349. [8] 李先义,金银来. 对G.Ladas的一个Open问题的解答[J]. 数学杂志,2002,22(1):50-52. [9] 李先义. 一类非线性时滞差分方程解的若干性质[J]. 应用数学,2000,13(1)::27-30. [10] Kocic V L, Ladas G. Global Behavior of Nonlinear Difference Equations of Higher Order with Applications[M]. Dordrect: Kluwer Academic Publishers,1993.
计量
- 文章访问数: 2554
- HTML全文浏览量: 163
- PDF下载量: 633
- 被引次数: 0