The Lie Symmetries and Conserved Quantities of Variable-Mass Nonholonomic System of Non-Chetaev's Type in Phase Space
-
摘要: 在相空间引入无限小群变换,研究变质量非Четаев型非完整系统的Lie对称和守恒量.利用系统运动微分方程在无限小群变换下的不变性建立Lie对称的确定方程和限制方程,得到Lie对称的结构方程和守恒量,并举例说明结果的应用.Abstract: The Lie symmetries and the conserved quantities of a variable mass nonholonomic system of non-Chetaev's type are studied by introducing the infinitesimal transformations of groups in phase space. By using the invariance of the differential equations of motion under the infinitesmal transformations of groups,the determining equations and the restriction equations of the Lie symmetries of the system are established,and the structure equations and the conserved quantities are obtained. An example is given to illustrate the application of the result.
-
Key words:
- nonholonomic system /
- phase space /
- analytic mechanics /
- variable mass /
- Lie symmetry /
- conserved quantity
-
[1] Lutzky M.Dynamical symmetries and conserved quantities[J].J Phys A:Mach Gen,1979,12(7):973-981. [2] Bluman G W,Kumei S.Symmetries and Differential Equations[M].New York:Springer-Verlag,1989. [3] 赵跃宇,梅凤翔.关于力学系统的对称性与不变量[J].力学进展,1993,23(3):360-372. [4] 赵跃宇.非保守力学系统的Lie对称性和守恒量[J]. 力学学报,1994,26(3):380-384. [5] WU Run-heng,MEI Feng-xiang.On the Lie symmetries of the nonholonomic mechanical systems[J].Journal of Beijing Institute Technology,1997,6(3):229-235. [6] 梅凤翔,吴润衡,张永发. 非Четаев型非完整系统Lie对称性与守恒量[J].力学学报,1998,30(4):468-474. [7] 梅凤翔. 变质量完整力学系统的Lie对称性和守恒量[J].应用数学和力学,1999,20(6):592-596. [8] 刘荣万,傅景礼.非完整非保守力学系统在相空间的Lie对称性与守恒量[J].应用数学和力学,1999,20(6):597-601. [9] 梅凤翔,刘瑞,罗勇.高等分析力学[M].北京:北京理工大学出版社,1991.
计量
- 文章访问数: 2808
- HTML全文浏览量: 165
- PDF下载量: 688
- 被引次数: 0