Application of Mechanized Mathematics to Rotor Dynamics
-
摘要: 基于机械化数学-吴文俊消去法,分别采用短轴承油膜力模型和Muszynska转子力学模型,对转子轴承系统中的动力学行为与稳定性进行了分析研究.具体分析时,采用吴文俊特征列概念和基于Maple软件的符号计算平台,对短轴承涡动参数进行了解析分析,以及试算构造出了Liapunov函数,并给出了转子系统运动稳定性条件.Abstract: Based on the mechanize d mathematics and WU Wen-tsun elimination method, using oil film forces of short be aring model and Muszynska's dynamic model, the dynamical behavior of rotor-bearing system and its stability of motion are investigated. As example, the concept of Wu characteristic set and Maple software, whirl par ameters of short-bearing model, which is usually solved by the numerical method, are analyzed. At tha same time, stability of zero solution of Jeffcott rotor whirl equation and stability of self-excited vibration are studied. The conditio ns of stable motion are obtained by using theory of nonlinear vibration.
-
Key words:
- Wentsun elimination method /
- char acteristic set /
- stability of motio n /
- rotor-bearing system /
- whirl
-
[1] 石赫.机械化数学引论[M].湖南:湖南教育出版社,1998. [2] 吴文俊.吴文俊论数学机械化[M].山东:山东科学技术出版社,1996. [3] 刘来福,何青,彭芳麟,等.用Maple和MATLAB解决科学计算问题[M].北京:高等教育出版社,施普林格出版社,1999. [4] 钟一谔,何衍宗,王正.转子动力学[M].北京:清华大学出版社,1987. [5] Muszynska A.Stability of whirl and whip in rotor/bearing systems[J].J Sound and Vibration,1988,127(1):49-64. [6] 胡超,黄文虎,夏松波,等.Jeffcott转子稳定性的分析[A].见:黄文虎,闻邦春编.第七届全国振动理论及其应用学术会议论文集[C].广东,佛山,1999. [7] YU Wang.Prediction of periodic response of rotor dynamic system with nonlinear supports[J].Journal of Vibration and Acoustics,1997,119(7):346-353. [8] Clarkson P A.Nonclassical symmetry reductions of nonlinear partial differential equations[J].Math Comput Modeling,1993,18(10):45-68.
计量
- 文章访问数: 2359
- HTML全文浏览量: 98
- PDF下载量: 592
- 被引次数: 0