留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

“Good”Boussinesq方程的多辛算法

曾文平 黄浪扬 秦孟兆

曾文平, 黄浪扬, 秦孟兆. “Good”Boussinesq方程的多辛算法[J]. 应用数学和力学, 2002, 23(7): 743-748.
引用本文: 曾文平, 黄浪扬, 秦孟兆. “Good”Boussinesq方程的多辛算法[J]. 应用数学和力学, 2002, 23(7): 743-748.
ZENG Wen-ping, HUANG Lang-yang, QIN Meng-zhao. The Multi-Symplectic Algorithm for“Good” Boussinesq Equation[J]. Applied Mathematics and Mechanics, 2002, 23(7): 743-748.
Citation: ZENG Wen-ping, HUANG Lang-yang, QIN Meng-zhao. The Multi-Symplectic Algorithm for“Good” Boussinesq Equation[J]. Applied Mathematics and Mechanics, 2002, 23(7): 743-748.

“Good”Boussinesq方程的多辛算法

基金项目: 中科院计算数学与科学工程计算研究所科学与工程计算国家重点实验室资助项目;华侨大学自然科学基金资助项目
详细信息
    作者简介:

    曾文平(1940- ),男,福建惠安人,男,教授(E-mail:qmz@lsec.cc.ac.cn).

  • 中图分类号: O241.82

The Multi-Symplectic Algorithm for“Good” Boussinesq Equation

  • 摘要: 考虑非线性“Good”Boussinesq方程的多辛形式,对于多辛形式,提出了一个新的等价于中心Preissman积分的15点多辛格式。数值试验结果表明:多辛格式具有良好的长时间数值行为。
  • [1] Ortega T,Sanz-Serma J M.Nonlinear stability and convergence of finite-difference methods for the "Good" Boussinesq equation [J].Numer Math,1990,58(3):215-229.
    [2] Manoranjan V S,Mitchell A R,Morris J L L.Numerical solu tions of the "Good" Boussinesq equation[J].SIAM J Sci Stat Comput,1984,5(4):946-957.
    [3] Manoranjan V S,Ortega T,Sanz-Serma J M.Solution and anti-soluti on interactions in the "Good" Boussinesq equation[J].J Math Phys,1988,29(9):1964-1968.
    [4] FENG Kang,Qin M Z.The symplectic methods for the computation of Hamiltonian equations[A].In:ZHU You-lan,GUO Ben-yu Eds.Proc of 1-st Chinese Cong.on Numerical Methods of PDE's Shanghai,1986,Lecture Notes in Math[C].No 1279,Berlin:Springer,1987,1-37.
    [5] FENG Kang.On difference schemes and symplectic geometry[A].In:FENG Kang Ed.Proceeding of the 1984 Beijing Symposium on Differential Geometry and Differential Equations,Computation of Partial Differential Equations[C].Beijing:Science Press,1985,42-58.
    [6] FENG Kang.Differenceschemes for Hamiltonian formulism an dsymplectic geometry[J].J Comput Math,1986,4(3):279-289.
    [7] QIN Meng-zhao,Zhu W J.Construction of symplectic schemes for wave equations viahyperbolic functionssinh(x),cosh(x),tanh(x)[J].Computers Math Applic,1993,26(8):1-11.
    [8] Bridges TH J,Reich S.Multi-symplectic integrators:numerical schemes for Hamiltonian PDEs that conserve symplecticity[R].
    [9] Bridges TH J.Multi-symplectic structures and wave propagation[J].Math Proc Cam Phil Soc,1997,121(2):147-190.
    [10] Abbott M B,Basco D K.Computational Fluid Dynamics[M].Lon don:Longman Scientific & Technical,1989.
    [11] Reich S.Multi-symplectic Runge-Kutta methods for Hamiltonian wave equations[J].J Comput Phys,2000,157(5):473-499.
  • 加载中
计量
  • 文章访问数:  2573
  • HTML全文浏览量:  101
  • PDF下载量:  634
  • 被引次数: 0
出版历程
  • 收稿日期:  2001-09-25
  • 修回日期:  2002-02-05
  • 刊出日期:  2002-07-15

目录

    /

    返回文章
    返回