[1] |
Gerhart P M. Fundamentals of Fluid Mechanics[M]. Wesly Publishing Comp Inc,1993,11-20.
|
[2] |
Vujanovic B, Stauss A M, Djukic Dj. A variational solution of the Rayleigh problem for a power law non-Newtonian conducting fluid[J]. Ingenieur-Archiv,1972,41:381-386.
|
[3] |
Sapunkov Ya G. Rayleigh problem of non-Newtonian electroconductive fluids[J]. J Appl Math Tech Physics,1970,2:50-55.
|
[4] |
Vujanovic B. An approach to linear and nonlinear heat transfer problem using a Lagrangian[J]. J AIAA,1971,9:327-330.
|
[5] |
Birkhoff G. Mathematics for engineers[J]. Elect Eng,1948,67:1185-1192.
|
[6] |
Morgan A J A. The reduction by one of the number of independent variables in some systems of nonlinear partial differential equations[J]. Quart J Math Oxford,1952,3(2):250-259.
|
[7] |
Abd-el-Malek M B, Badran N A. Group method analysis of unsteady free-convective laminar boundary~layer flow on a nonisothermal vertical circular cylinder[J]. Acta Mechanica,1990,85:193-206.
|
[8] |
Abd-el-Malek M B, Boutros Y Z, Badran N A. Group method analysis of unsteady free-convective boundary-layer flow on a nonisothermal vertical flat plate[J]. J Engineering Mathematics,1990,24:343-368.
|
[9] |
Boutros Y Z, Abd-el-Malek M B, El-Awadi A, et al. Group method for temperature analysis of thermal stagnant lakes[J]. Acta Mechanica,1999,114:131-144.
|
[10] |
Fayez H M, Abd-el-Malek M B. Symmetry reduction to higher order nonlinear diffusion equation[J]. Int J Appl Math,1999,1:537-548.
|
[11] |
Ames W F. Similarity for the nonlinear diffusion equation[J]. I & EC Fundamentals,1965,4:72-76.
|
[12] |
Moran M J, Gaggioli R A. Reduction of the number of variables in system of partial differential equations with auxiliary conditions[J]. SIAM J Applied Mathematics,1968,16:202-215.
|
[13] |
Burden R, Faires D. Numerical Analysis[M]. Prindle: Weberand Scmidt,1985.
|