留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高阶(2+1)维Broer-Kaup方程的局域相干结构

张解放 刘宇陆

张解放, 刘宇陆. 高阶(2+1)维Broer-Kaup方程的局域相干结构[J]. 应用数学和力学, 2002, 23(5): 489-496.
引用本文: 张解放, 刘宇陆. 高阶(2+1)维Broer-Kaup方程的局域相干结构[J]. 应用数学和力学, 2002, 23(5): 489-496.
ZHANG Jie-fang, LIU Yu-lu. Localized Coherent Structures of the(2+1)-Dimensional Higher Order Broer-Kaup Equations[J]. Applied Mathematics and Mechanics, 2002, 23(5): 489-496.
Citation: ZHANG Jie-fang, LIU Yu-lu. Localized Coherent Structures of the(2+1)-Dimensional Higher Order Broer-Kaup Equations[J]. Applied Mathematics and Mechanics, 2002, 23(5): 489-496.

高阶(2+1)维Broer-Kaup方程的局域相干结构

基金项目: 国家自然科学基金资助项目(19872043)
详细信息
    作者简介:

    张解放(1959- ),男,教授;刘宇陆(1959- ),男,教授,博士.

  • 中图分类号: O175.29

Localized Coherent Structures of the(2+1)-Dimensional Higher Order Broer-Kaup Equations

  • 摘要: 利用推广的齐次平衡方法,研究高阶(2+1)维Broer-Kaup方程的局域相干结构.首先基于推广的齐次平衡方法,给出这个模型的一个非线性变换,并把它变换成一个线性化的方程.然后从线性化方程出发,构造出一个分离变量的拟解.由于拟解中不仅含有两个y的任意函数,而且还有{αi,βi,γk,kj,lk}和{N,M,L}这些参数可以任意选取,因此合适的选择这些函数和参数,可以得到新的相当丰富的孤子结构.方法直接而简单,可推广应用一大类(2+1)维非线性物理模.
  • [1] Boiti M,Leon J J P,Martina L,et al.Scattering of localized solitons in the plane[J].Phys Lett A,1988,132(8-9):432-439.
    [2] Fokas A S,Santini P M.On the simplest integrable equation in 2+1[J].Phyisica D,1990,44(1):99-104;Hietarinta J,Hirota R.Multidromion solutions to the Davey-Stewartson equation[J].Phys Lett A,1990,145(5):237-244.
    [3] Hietarinta J.One-dromion solutions for generic classes of equations[J].Phys Lett A,1990,149(2-3):113-117.
    [4] Radha R,Lakshmanan M.Singularity analysis and localized cohernet structures in(2+1)-dimensional generalized Korteweg-de Vries equations[J].J Math Phys,1994,35(9):4746-4756.
    [5] Radha R,Lakshmanan M.Dromion like structures in the(2+1)-dimensional breaking soliton equation[J].Phys Lett A,1995,197(1):7-12.
    [6] Radha R,Lakshmanan M.Exotic coherent structures in the(2+1)-dimensional long dispersive wave equation[J].J Math Phys,1997,38(2):292-299.
    [7] Radha R,Lakshmanan M.A new class of induced localized structures in the(2+1)-dimensional scalar nonlinear Schrdinger equations[J].J Phys A,1997,30:3229-3232.
    [8] Lou S Y,Dromion-like structures in a(3+1)-dimensional KdV-type equation[J].J Phys A,1996,29:5989-6001.
    [9] Ruan H Y,Lou S Y.Higher-dimensional dromion structures:Jimbo-Miwa-Kadomtsev-Petviashvili system[J].J Math Phys,1997,38(6):3123-3136.
    [10] Lou S Y.Generalized dromion solutions of the(2+1)-dimensional KdV equation[J].J Phys A,1995,28:7227-2732.
    [11] Lou S Y.On the dromion solutions of the potential breaking soliton equation[J].Commun Theor,1996,26(4):487-492.
    [12] Radha R,Lakshmanan M.Generalized dromions in the(2+1)-dimensional long dispersive wave(2LDW) and scalar nonlinear Schrdinger(NLS) equations[J].Chaos Solitons & Fractals,1999,10:1821-1824.
    [13] ZHANG Jie-fang.Generalized dromions of the(2+1)-dimensional nonlinear Schrdinger equations[J].Communcation in Nonlinear Science & Numerical Simulation,2001,6(1):50-53.
    [14] ZHANG Jie-fang.A simple soliton solution method for the(2+1)-dimensional long dispersive wave equations[J].Acta Physica Sinica(Overseas Edition),1999,8(2):326-330.
    [15] Lou S Y.On the coherent structures of the Nizhnik-Novikov-Veselov equation[J].Phys Lett A,2000,277:94-100.
    [16] Lou S Y,Ruan H Y.Revisitation of the localized excitations of the(2+1)-dimensional KdV equation[J].J Phys A:Math Gen,2001,34:305-316.
    [17] RUAN Hang-yu,CHEN Yi-xin.Ring solitions,dromions,breathers and instantons of the NLS equation[J].Acta Physica Sinica,2001,50(4):586-591.
    [18] WANG Ming-liang.The solitary wave solutions for variant Boussinesq equations[J].Phys Lett A,1995,199:169-172.
    [19] ZHANG Jie-fang.Multiple solitions of long liquid wave equations[J].Acta Physica Sinica,1999,47(9):1416-1420;Multi-soliton solutions of the dispersive long wave equation[J].Chin Phys Lett,1999,16(1):659-661.
    [20] ZHANG Jie-fang.Bcklund transformation and multisoliton-like solution of the(2+1)-dimensional dispersive long wave equations[J].Commun Theor Phys,2000,33(4):577-582.
    [21] FANG Een-gui,ZHANG Hong-qing.Solitary wave solution of nonlinear wave equqtion[J].Acta Physica Sinica,1997,46(1):1254-1259.
    [22] LOU Sen-yue,WU Xing-biao.Broer-Kaup systems from Darboux transformation related symmetry constraints of KP equation[J].Commun Theor Phys,1998,29(1):145-148.
  • 加载中
计量
  • 文章访问数:  2153
  • HTML全文浏览量:  104
  • PDF下载量:  669
  • 被引次数: 0
出版历程
  • 收稿日期:  2001-07-03
  • 修回日期:  2001-11-28
  • 刊出日期:  2002-05-15

目录

    /

    返回文章
    返回