Proper Application of a Kind of Matrix Construction Method in Physical Parameter Identification of Dynamic Model
-
摘要: 通过矩阵奇异值分解得到矩阵构造的表达式,并将其应用于动力模型物理参数识别问题.根据矩阵构造表达式的特点,可以使参数识别模型降阶,降阶后的模型与原模型之间的数学和物理性质有明确的对应关系,避免了为忽略高阶频率而采用缩聚方法造成的误差.最后,数值算例获得满意的结果.Abstract: The expressions of matrix construction by using the singular value decomposition(SVD) are applied to the physics parameter identification of dynamic model.Then,based upon to the characteristics of a kind of matrix construction method,the orders of the parameter identification model can be reduced.After reducing,the mathematics and physics correspondence relations between the subsystem and the original system are distinct.the the condensation errors can be avoided.The numerical example shows the benefit of the presented methodology.
-
Key words:
- dynamic model /
- parameter identification /
- inverse problem /
- vibration /
- matrix construction
-
[1] 李书,孙忠凯,张放等.基于矩阵逆特征值法的结构动力学设计[J].北京航空航天大学学报,2002,28(1):82-85. [2] 戴华.实对称矩阵广义特征值反问题[J].高校应用数学学报,1992,17(2):167-176. [3] 李书,冯太华,范绪箕.动力模型修正中逆特征值问题的数值解法[J].计算结构力学及其应用,1995,12(3):276-280. [4] 周树荃,戴华编著.代数特征值反问题[M].郑州:河南科学技术出版社,1991. [5] Friedland S,Nocedal J,Overton M L.The formulation and analysis numerical methods for inverse eigenvalue problems[J].SIAM J Numer Anal,1987,24(3):634-667. [6] Sun J G.A note on local behavior of multiple eigenvalues[J].SIAM Matrix Anal Appl,1989,10(4):533-541. [7] 李书,冯太华,范绪箕.结构静力问题的重特征值灵敏度分析[J].工程力学,1996,13(2):97-104. [8] Lin C S.Location of modeling errors using model test data[J].AIAA J,1990,28(9):1650-1654. [9] 钱管良、顾松年.一种确定误差位置的方法[J].航空学报,1992,13(9):A476-479. [10] 唐驾时,梁翔,满足结构动力学特性的结构参数设计[J].工程力学,1995,12(2):30-34.
计量
- 文章访问数: 2947
- HTML全文浏览量: 180
- PDF下载量: 642
- 被引次数: 0