On the Continuity and Differentiability of a Kind of Fractal Interpolation Function
-
摘要: 获得了由迭代函数系统(IFS)定义的两类分形插值函数具有Hlder连续性的充分条件,给出了这两类分形插值函数连续可微的充要条件,并证明了可微分形插值函数的导函数是由关联IFS生成的分形插值函数.Abstract: The sufficient conditions of Helder continuity of two kinds of fractal interpolation functions defined by IFS were obtained. The sufficient and necessary condition for its differentiability was proved. Its derivative was a fractal interpolation function generated by the associated IFS, if it is differentiable.
-
Key words:
- fractal /
- interpolation function /
- Helder continuity /
- differentiability
-
[1] Barnsley M F.Fractal functions and interpolation[J].Constr Approx,1986,2(3):303-329. [2] Barnsley M F.Fractal Everywhere[M].Boston:Academic Press,1988. [3] Massopust Peter R.Fractal function and applications[J].Chaos Solitons & Fractal,1997,8(2):171-190. [4] Peter Singer.Self-afine functions and wavelet series[J].J Math Appl,1999,240(2):518-551. [5] Jacques Levy-Vehel.Fractal approaches in signal processing[J].Fractals,1995,3(4):715-775. [6] Panagiotopoulos P D,Panagouli D.Mechanics on fractal bodies:Data compression using fractal[J].Chaos Solitons & Fractal,1997,8(2):253-267. [7] 谢和平,孙洪泉.分形插值曲面理论及应用[J].应用数学和力学,1998,19(4):297-306. [8] Bedford T.Helder expontents and box dimension for self-affine fractal function[J].Constr Approx,1989,5(1):33-48. [9] Donovan G,Geronimo J S,Massopust P R.Construction of orthogonal wavelets using fractal interpolation functions[J].SIAM J Math Anal,1996,27(4):1158-1192. [10] Barnsley M F,Harring A N.The calculus of interpolation function[J].J Approx Theory,1989,57(1):14-34.
计量
- 文章访问数: 2449
- HTML全文浏览量: 128
- PDF下载量: 613
- 被引次数: 0