留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

谐和与随机噪声联合作用下Vander Pol-Duffing振子的参数主共振

戎海武 徐伟 王向东 孟光 方同

戎海武, 徐伟, 王向东, 孟光, 方同. 谐和与随机噪声联合作用下Vander Pol-Duffing振子的参数主共振[J]. 应用数学和力学, 2002, 23(3): 273-282.
引用本文: 戎海武, 徐伟, 王向东, 孟光, 方同. 谐和与随机噪声联合作用下Vander Pol-Duffing振子的参数主共振[J]. 应用数学和力学, 2002, 23(3): 273-282.
RONG Hai-wu, XU Wei, WANG Xiang-dang, MENG Guang, FANG TONG. Principal Response of Van der Pol-Duffing Oscillator Under Combined Deterministic and Random Parametric Exciation[J]. Applied Mathematics and Mechanics, 2002, 23(3): 273-282.
Citation: RONG Hai-wu, XU Wei, WANG Xiang-dang, MENG Guang, FANG TONG. Principal Response of Van der Pol-Duffing Oscillator Under Combined Deterministic and Random Parametric Exciation[J]. Applied Mathematics and Mechanics, 2002, 23(3): 273-282.

谐和与随机噪声联合作用下Vander Pol-Duffing振子的参数主共振

基金项目: 国家自然科学基金资助项目(10072049;19972054);广东省自然科学基金资助项目(9744);上海交通大学振动、冲击、噪声国家重点实验室开放基金资助项目(VSN-2002-04);教育部骨干教师计划资助项目
详细信息
    作者简介:

    戎海武(1965- ),男,浙江宁波人,副教授,博士.

  • 中图分类号: O324

Principal Response of Van der Pol-Duffing Oscillator Under Combined Deterministic and Random Parametric Exciation

  • 摘要: 研究了Vander Pol-Duffing振子在谐和与随机噪声联合激励下的参数主共振响应和稳定性问题。用多尺度法分离了系统的快变项,并求出了系统的最大Liapunov指数和稳态概率密度函数,还分析了失稳、分叉和跳跃现象,讨论了系统的阻尼项、非线性项、随机项和确定性参激强度等参数对系统响应的影响。数值模拟表明所提出的方法是有效的。
  • [1] 朱位秋. 随机振动[M]. 北京:科学出版社,1992.
    [2] Stratonovitch R L, Romanovskii Y M. Parametric effect of a random force on linear and nonlinear oscillatory systems[A]. In: P T Kuznetsov, R L Stratonovitch, V I Tikhonov,Eds. Nonlinear Translations of Stochastic Process[C]. Oxford: Pegramon,1996.
    [3] Dimentberg M F, Isikov N E, Model R. Vibration of a system with cubic-non-linear damping and simultaneous periodic and random parametric excitation[J]. Mechanics of Solids,1981,16(1):19-21.
    [4] Namachchivaya N S. Almost sure stability of dynamical systems under combined harmonic and stochastic excitations[J]. Journal of Sound and Vibration,1991,151(1):77-91.
    [5] Ariaratnam S T, Tam D S F. Parametric random excitation of a damped Mathieu oscillator[J]. ZAngew Math Mech,1976,56(3):449-452.
    [6] Dimentberg M F. Statistical Dynamics of Nonlinear and Time-Varying Systems[M]. New York: Wiley,1988.
    [7] RONG Hai-wu, XU Wei, FANG Tong. Principal response of Duffing oscillator to combined deterministic and narrow-band random parametric excitation[J]. Journal of Sound and Vibration, 1998,210(4):483-515.
    [8] Wedig W V. Invariant measures and Lipunov exponents for generalized parameter fluctuations[J]. Structural Safety,1990,8(1):13-25.
    [9] Nayfeh A H. Introduction to Perturbation Techniques[M]. New York: Wiley,1981.
    [10] Rajan S, Davies H G. Multiple time scaling of the response of a Duffing oscillator to narrow-band excitations[J]. Journal of Sound and Vibration,1988,123(3):497-506.
    [11] Nayfeh A H, Serhan S J. Response statistics of nonlinear systems to combined deterministic and random excitations[J]. International Journal of Nonlinear Mechanics,1990,25(5):493-509.
    [12] Oseledec V I. A multiplicative ergodic theorem, Liapunov characteristic numbers for dynamical systems[J]. Transaction of the Moscow Mathematical Society,1968,19(2):197-231.
    [13] Wiggins S. Global Bifurcations and Chaos-Analysis Methods[M]. New York: Springer-Verlag.1990.
  • 加载中
计量
  • 文章访问数:  2504
  • HTML全文浏览量:  65
  • PDF下载量:  597
  • 被引次数: 0
出版历程
  • 收稿日期:  2000-09-06
  • 修回日期:  2001-08-20
  • 刊出日期:  2002-03-15

目录

    /

    返回文章
    返回